Na	me:

Unit 9: The Mole- Guided Notes

What is a Mole?

- A mole is a name for a specific ______ of things
 - Similar to a ______ or a ______
- One mole is equal to...

0

- o 602 _____
- o 602,000,000,000,000,000,000
 - That's 602 with _____ zeros
- A mole is NOT an abbreviation for molecule
- A mole is also called ______

- How many of anything are in one dozen anything? _______

Definition of the Mole:

- The number of ______ equal to the number of atoms in exactly of Carbon-12
- The quantity of ______
- Why are the moles of water molecules and sugar molecules so much smaller than the moles of jelly beans and donuts?
- Why do you think scientists use the mole?
- Think of the mole as a bridge.....It connects the microscopic world (of atoms and molecules) that we cannot see to the macroscopic world we live in
- The mole will be the bridge connecting moles, ______,

_____, and _____,

Ioles	and Ma	SS		
•	What i	s the desired unit in a lab for mass?		
•	• We need to relate the atomic mass () of an element to an amount of the e			
	in			
	0	The MOLE relates these two!		
•	The	of a substance is equal in magnitude to the		
		of a substance		
	0	For example the atomic mass of hydrogen is and the		
		molar mass of hydrogen is		
Iolar	Mass			
•	Mass o	of (or 6.02 x 10 ²³) of a substance.		
•	Equal to the magnitude of the atomic mass of an element.			
•	Measu	ired in		
•	The m	olar mass of each individual element is listed on the periodic table		
•	Practic	ze:		
	0	What is the molar mass of Sodium?		
	0	What is the mass of a mole of Nitrogen?		
	0	What is the mass of 6.02 x 10^{23} atoms of fluorine?		
	0	What do you call the mass of a mole?		
•	Calculating Molar Mass			
 To calculate molar mass you the mass of each atom 		To calculate molar mass you the mass of each atom in a		
		compound		
	0	Example: Determine the molar mass of CaCl ₂		
		 How many calcium atoms are in CaCl₂? How many chlorine atoms are in CaCl₂? 		
	0	Add the mass of 1 calcium atom plus the mass of 2 chlorine atoms		
•	Practio	te: 1) What is the molar mass of magnesium nitrate, $Mg(NO_3)_2$?		
		2) What is the mass of one mole of Al(OH) ₃ ?		

3) What is the mass of 6.02×10^{23} molecules of water?

Percent Composition:

- What is a percentage?
- What does it mean if you made an 88% on a test?
- A percentage is simply ______
- How would you calculate the percentage of people in this class wearing glasses?
- Percent composition is another type of percentage.
- Percent composition is the percentage by ______ of each element in a compound
- % composition=
- Round your answer to ______ decimal places
- Fine the percent composition of Carbon in the following:
 - C₃H₇OH
 - CO₂
- Practice: Determine the percent composition of all of the elements in the following compounds (remember you already did Carbon).
 - 1) C₃H₇OH
 - 2) CO₂
 - 3) If you add the percent composition for each element in a compound what will your answer be?

Nama	
NAME	
i tunici	

Mass $\leftarrow \rightarrow$ Moles

- When converting between mass (______) and moles, you MUST determine the
- ______ will be used as a conversion factor to
 convert between units of ______ and units of ______
 - Because molar mass is the mass of _____ mole of substance the conversion factor can be written as
- When converting between mass (g) and moles, look at the units to determine if you need to multiply or divide
 - 1) What is the mass of 0.045 moles of NaCl? (remember to find molar mass)
 - 2) If a student measured 0.25g of NaCl in lab, how many moles does the student have?
- Practice: Convert the following to grams:
 - 3) 1.70 mole of KMnO₄
 - 4) 2.5 mole CO₂
 - 5) 1.98 x 10^5 moles of AlBr₃
- Practice: Convert the following to moles:
 - 6) 74g of KCl
 - 7) 125g of H₂SO₄
 - 8) 0.00745g of (NH₄)₂S

Types of Particles (Review)

Type of Particles	Explanation	Examples
Atoms	 Smallest component of an element that retains its chemical properties Made up of protons, poutrops, and electrops 	
Molecules	 Two or more atoms are chemically bonded together Types of molecules include: Diatomic molecules, compounds, formula units, etc 	

Mole $\leftarrow \rightarrow$ Particles

- 1 mole of a substance is equivalent to ______ particles of substance
- To convert between moles and particles use the conversion factor
- Example 1: How many compounds are in 2.34 moles of sodium chloride?

_____=____=

- Example 2: How many moles are in 8.23 x 10³² molecules of water?
- Practice:
 - 1. How many moles are in 9.21x10⁴⁴ molecules of Hydrofluoric acid?
 - 2. How many atoms of sodium are in 13.2 moles of sodium?
 - 3. How many atoms of oxygen are in one molecule of Phosphoric acid?
 - 4. How many atoms of oxygen are in 18.9 moles of phosphoric acid (hint convert to molecules first then convert to atoms)?

Volume $\leftarrow \rightarrow$ Moles

- - Standard temperature= ______
 - Standard pressure= _____
 - All problems in this are at STP unless otherwise stated
- The volume (______) occupied by one mole of ______ at STP is always
 - o _____=____=
 - \circ $\$ We can use this as a conversion factor when converting between volume and moles
- Example 1: What volume will 5.99 moles of oxygen gas occupy at STP?
- Example 2: If a gas occupies 0.176 L of space at STP, how many moles of gas are present?
- Practice:
 - 1. If a sample of carbon dioxide occupies 457 L of space at STP, how many moles of carbon dioxide gas are present?
 - 2. A sample of gas was measure to contain 4.23 moles of gas at STP. What is the volume of this gas?

Mole Math Practice

- 1. What is the mass of 1.23×10^{25} atoms of potassium metal?
- 2. What volume would 75 g of oxygen gas (O₂) occupy at STP?
- 3. How many compounds of carbon dioxide are present in 15 L of carbon dioxide at STP?

- 4. What volume would 6.5 x 10²⁰ molecules of hydrogen gas (H₂) occupy at STP?
- 5. How many atoms of aluminum are in a 0.50gram sample of aluminum metal?
- 6. What would the mass of a 32L sample of Neon be at STP?

Molecular and Empirical Formula

- ______ is a group of element symbols with subscripts which represent the actual composition of a molecule. Shows the actual # of each atom found in a specific molecule (not simplified)
- ______ shows the simplest whole number ratio for the elements in the compound. (i.e. simplified molecular formula)
 - \circ To find the EF, determine the largest common denominator of the subscripts of the MF.
 - Sometimes the EF = MF (especially with _____)
- Example: Determine the empirical formula for the following:

Molecular Formula	Empirical Formula	
1. H ₂ O		
2. H ₂ O ₂		
3. $C_6H_{12}O_6$		
4. CH ₄		
5. C ₂ H ₆		
6. C ₈ H ₁₈		

• Determining the Molecular Formula

- You are given: EF and Molar Mass of the MF
 - 1. Determine the ______ of the EF.
 - 2. _____ the molar mass of the MF (given) by the molar mass of the EF
 - 3. mm MF \div mm EF = a multiple
 - 4. ______ the subscripts of the EF by the answer the step 2.

- Molecular Formula Practice:
 - 1. What is the molecular formula of a compound that has a molar mass of 98.21 g/mol and an empirical formula of CH₂?
 - 2. What is the molecular formula of a compound that has a molar mass of 120.02 g/mol and an empirical formula of CO₃?
- Determining the Empirical Formula
 - o Given: percent composition of each element in the compound
 - Steps to determine EF:
 - 1. Use the mass given, or if no mass given assume there is exactly

_____ of the substance (aka change percent sign to

grams).

- Convert mass into ______ of each element (by dividing the mass by the molar mass of the atom). This will give you moles of the atom. Keep _____ decimal places.
- Compare the mole quantities by dividing all moles by the smallest number of moles (*this step should produce a whole number)
- 4. Use the ratios from step 3 as ______.
- <u>Problem</u>: Determine the empirical Formula for a compound with the following composition:

40.00% C 6.72% H 53.28% O

• Now using the EF to calculate the MF. Suppose the molar mass of the MF is 180 g/mol. What is the molecular formula?

- Empirical Formulas: If you do not get ______ numbers when you divide by smallest number of moles, and you get a number that ends in .5, multiply ALL ELEMENTS by ______ (because .5 is really ½)
 - \circ $\:$ If you don't get whole numbers and you get a decimal other than .5, you messed up
- Why do we want whole numbers?
- Example #2: Calculate the empirical formula of a compound containing 38.67% C, 16.22% H, and 45.11% N.

• Example 2 Continued: After determining the EF, suppose the molar mass of this compound is 93.21 g/mol and determine the MF.

• Example 3: A substance is 41.87% C, 2.35% H, and 55.78% O. What is the empirical formula?

• Example 4: Caffeine is 49.48% C, 5.15% H, 28.87%N, and 16.49% O. What is the empirical formula?