\qquad

Unit 9: The Mole- Guided Notes

What is a Mole?

- A mole is a name for a specific \qquad of things
- Similar to a \qquad or a \qquad
- One mole is equal to...
- 602 \qquad
- 602,000,000,000,000,000,000,000
- That's 602 with \qquad zeros
\circ \qquad
- A mole is NOT an abbreviation for molecule
- A mole is also called \qquad
- How many donuts are in one dozen donuts? \qquad
- How many donuts are in one mole of donuts? \qquad
- How many jelly beans are in one dozen jelly beans? \qquad
- How many jelly beans are in one mole of jelly beans? \qquad
- How many of anything are in one dozen anything? \qquad
- How many of anything are in one mole of anything? \qquad
Definition of the Mole:
- The number of \qquad equal to the number of atoms in exactly
\qquad of Carbon-12
- The quantity of \qquad
- Why are the moles of water molecules and sugar molecules so much smaller than the moles of jelly beans and donuts?
- Why do you think scientists use the mole?
- Think of the mole as a bridge.....It connects the microscopic world (of atoms and molecules) that we cannot see to the macroscopic world we live in
- The mole will be the bridge connecting moles, \qquad ,
\qquad and \qquad
\qquad
\qquad

Moles and Mass

- What is the desired unit in a lab for mass? \qquad
- We need to relate the atomic mass \qquad) of an element to an amount of the element in \qquad
- The MOLE relates these two!
- The \qquad of a substance is equal in magnitude to the
\qquad of a substance
- For example the atomic mass of hydrogen is \qquad and the molar mass of hydrogen is \qquad

Molar Mass

- Mass of \qquad (or 6.02×10^{23}) of a substance.
- Equal to the magnitude of the atomic mass of an element.
- Measured in \qquad
- The molar mass of each individual element is listed on the periodic table
- Practice:
- What is the molar mass of Sodium?
- What is the mass of a mole of Nitrogen?
- What is the mass of 6.02×10^{23} atoms of fluorine?
- What do you call the mass of a mole?
- Calculating Molar Mass
- To calculate molar mass you \qquad the mass of each atom in a compound
- Example: Determine the molar mass of CaCl_{2}
- How many calcium atoms are in CaCl_{2} ? \qquad
- How many chlorine atoms are in CaCl_{2} ? \qquad
- Add the mass of 1 calcium atom plus the mass of 2 chlorine atoms
- Practice: 1) What is the molar mass of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$?

2) What is the mass of one mole of $\mathrm{Al}(\mathrm{OH})_{3}$?
3) What is the mass of 6.02×10^{23} molecules of water?
\qquad

Percent Composition:

- What is a percentage?
- What does it mean if you made an 88% on a test?
- A percentage is simply \qquad
- How would you calculate the percentage of people in this class wearing glasses?
- Percent composition is another type of percentage.
- Percent composition is the percentage by \qquad of each element in a compound
- \% composition=
- Round your answer to \qquad decimal places
- The total \% composition of a compound should add up to \qquad
- Fine the percent composition of Carbon in the following:
- $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
- CO_{2}
- Practice: Determine the percent composition of all of the elements in the following compounds (remember you already did Carbon).

1) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
2) CO_{2}
3) If you add the percent composition for each element in a compound what will your answer be?
\qquad

Mass $\leftarrow \rightarrow$ Moles

- When converting between mass (\qquad) and moles, you MUST determine the
- \qquad will be used as a conversion factor to convert between units of \qquad and units of \qquad
- Because molar mass is the mass of \qquad mole of substance the conversion factor can be written as
- When converting between mass (g) and moles, look at the units to determine if you need to multiply or divide

1) What is the mass of 0.045 moles of NaCl ? (remember to find molar mass)
2) If a student measured 0.25 g of NaCl in lab, how many moles does the student have?

- Practice: Convert the following to grams:

3) 1.70 mole of KMnO_{4}
4) 2.5 mole CO 2
5) 1.98×10^{5} moles of AlBr_{3}

- Practice: Convert the following to moles:

6) 74 g of KCl
7) 125 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$
8) 0.00745 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
\qquad

Types of Particles (Review)

Type of Particles	Explanation	Examples
Atoms	- Smallest component of an element that retains its chemical properties - Made up of protons, neutrons, and electrons	
Molecules	- Two or more atoms are chemically bonded together - Types of molecules include: Diatomic molecules, compounds, formula units, etc	

Mole $\leftarrow \rightarrow$ Particles

- 1 mole of a substance is equivalent to \qquad particles of substance
- To convert between moles and particles use the conversion factor
\qquad $=$ \qquad
- Example 1: How many compounds are in 2.34 moles of sodium chloride?
- Example 2: How many moles are in 8.23×10^{32} molecules of water?
- Practice:

1. How many moles are in 9.21×10^{44} molecules of Hydrofluoric acid?
2. How many atoms of sodium are in 13.2 moles of sodium?
3. How many atoms of oxygen are in one molecule of Phosphoric acid?
4. How many atoms of oxygen are in 18.9 moles of phosphoric acid (hint convert to molecules first then convert to atoms)?
\qquad Period: \qquad

Volume $\leftarrow \rightarrow$ Moles

- \qquad stands for standard temperature and pressure
- Because gases \qquad differently at different temperatures and pressures, we have to be specific about the temperature and pressure of a gas we are discussing
- Standard temperature= \qquad
- Standard pressure= \qquad
- All problems in this are at STP unless otherwise stated
- The volume (\qquad) occupied by one mole of \qquad at STP is always
\qquad
\circ \qquad $=$ \qquad
- We can use this as a conversion factor when converting between volume and moles
- Example 1: What volume will 5.99 moles of oxygen gas occupy at STP?
- Example 2: If a gas occupies 0.176 L of space at STP, how many moles of gas are present?
- Practice:

1. If a sample of carbon dioxide occupies 457 L of space at STP, how many moles of carbon dioxide gas are present?
2. A sample of gas was measure to contain 4.23 moles of gas at STP. What is the volume of this gas?

Mole Math Practice

1. What is the mass of 1.23×10^{25} atoms of potassium metal?
2. What volume would 75 g of oxygen gas $\left(\mathrm{O}_{2}\right)$ occupy at STP?
3. How many compounds of carbon dioxide are present in 15 L of carbon dioxide at STP?
\qquad
\qquad
4. What volume would 6.5×10^{20} molecules of hydrogen gas $\left(\mathrm{H}_{2}\right)$ occupy at STP?
5. How many atoms of aluminum are in a 0.50 gram sample of aluminum metal?
6. What would the mass of a 32 L sample of Neon be at STP?

Molecular and Empirical Formula

\bullet \qquad is a group of element symbols with subscripts which represent the actual composition of a molecule. Shows the actual \# of each atom found in a specific molecule (not simplified)

- \qquad shows the simplest whole number ratio for the elements in the compound. (i.e. simplified molecular formula)
- To find the EF, determine the largest common denominator of the subscripts of the MF.
- Sometimes the EF = MF (especially with \qquad _)
- Example: Determine the empirical formula for the following:

Molecular Formula	Empirical Formula
1. $\mathrm{H}_{2} \mathrm{O}$	
2. $\mathrm{H}_{2} \mathrm{O}_{2}$	
3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	
4. CH_{4}	
5. $\mathrm{C}_{2} \mathrm{H}_{6}$	
6. $\mathrm{C}_{8} \mathrm{H}_{18}$	

- Determining the Molecular Formula
- You are given: EF and Molar Mass of the MF

1. Determine the \qquad of the EF.
2. \qquad the molar mass of the MF (given) by the molar mass of the EF
3. $\mathrm{mm} \mathrm{MF} \div \mathrm{mm} \mathrm{EF}=$ a multiple
4. \qquad the subscripts of the EF by the answer the step 2.
\qquad
\qquad

- Molecular Formula Practice:

1. What is the molecular formula of a compound that has a molar mass of $98.21 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of CH_{2} ?
2. What is the molecular formula of a compound that has a molar mass of $120.02 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of CO_{3} ?

- Determining the Empirical Formula
- Given: percent composition of each element in the compound
- Steps to determine EF:

1. Use the mass given, or if no mass given assume there is exactly
\qquad of the substance (aka change percent sign to grams).
2. Convert mass into \qquad of each element (by dividing the mass by the molar mass of the atom). This will give you moles of the atom. Keep
\qquad decimal places.
3. Compare the mole quantities by dividing all moles by the smallest number of moles (*this step should produce a whole number)
4. Use the ratios from step 3 as \qquad .

- Problem: Determine the empirical Formula for a compound with the following composition: 40.00% C $\quad 6.72 \% \mathrm{H} \quad 53.28 \%$ O
- Now using the EF to calculate the MF. Suppose the molar mass of the MF is $180 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?
\qquad
\qquad
- Empirical Formulas: If you do not get \qquad numbers when you divide by smallest number of moles, and you get a number that ends in .5, multiply ALL ELEMENTS by \qquad (because .5 is really $1 / 2$)
- If you don't get whole numbers and you get a decimal other than .5, you messed up
- Why do we want whole numbers?
- Example \#2: Calculate the empirical formula of a compound containing $38.67 \% \mathrm{C}, 16.22 \% \mathrm{H}$, and 45.11\% N.
- Example 2 Continued: After determining the EF, suppose the molar mass of this compound is $93.21 \mathrm{~g} / \mathrm{mol}$ and determine the MF.
- Example 3: A substance is $41.87 \% \mathrm{C}, 2.35 \% \mathrm{H}$, and $55.78 \% \mathrm{O}$. What is the empirical formula?
- Example 4: Caffeine is 49.48% C, $5.15 \% \mathrm{H}, 28.87 \% \mathrm{~N}$, and 16.49% O. What is the empirical formula?

