Name:		Period:					
	Unit 5: Ionic Compounds- Guided Notes						
Lewis D	ot Structure:						
•	Used to represent						
	 O Remember to follow 						
	 Examples: 						
	Na		Р				
		Mg		S			
	Al	C C	Cl				
		Si		Ar			
Chemic	al Bonds						
•	Defined as forces of att	raction that hold two atoms t	ogether and allows them to func	tion as a unit			
•			and obtain an				
•		s of bonds possible and they					
			differences (We will	determine the type of			
	bond by which element	is are present)					
		: one or mo					
	0	: Metal and	a non-metal; possible a polyator	nic ion			
	0	: 2 nonmeta	als				
	0	: Hydrogen	and an anion or polyatomic ion				
Metalli	c Bonds						
•		is t	he force of attraction between v	alence electrons and the			
	metal ions.						
٠	It is the sharing of a			between many			
	positive ions, where the	e electrons act as a "glue" givi	ing the substance a definite struc	ture			
٠							
Review							
•		A	An element will gain, lose, or shar	e electrons in order to			
•	obtain a full octet	Loso alastrons, form (ations				
•		Lose electrons; form c gain electrons; form a					
•			• • • • • • • • • • • • • • • • • • •	charge			
•				_			
Ţ	a group of elements with an overall charge that function as a unit (common PAI are on back of PT)						
٠			, Charge of Cd				
	0	, * * 0***	, 0				
Ionic Bo							
•	Form between	and	ions.				
٠	Ionic bonds are formed	by the	of electrons				
٠		Ionic Compound- Made					
•			of more than 2 different element				
•		is the lo	owest ratio of ions in the compou	ina (this is why we simplify			
	subscripts).						
Howles	nic Compounds are form	hed					
	•		a				
•			u				

Name: _

Period:

- The non-metal gains electrons from the metal forming an _____
 - positive charges are very attracted to negative charges which is a type of electrostatic forces of attraction which we call
- When the cation and the anion form an ionic bond, they arrange in a three-dimensional shape called a
- There are charged particles present, but the compound has a net charge of ______

Properties of Ionic Compounds

- Electrically neutral (No net charge)
- Melting Point
 Requires a lot of ______ to break bonds
- Brittle and Crystalline
- Solid ionic compounds DO NOT conduct heat or electricity
- _____ (meaning when they are dissolved in water) of ionic compounds are good conductors of heat and energy

Writing Formulas for Ionic Compounds

- Rules to follows for Writing ionic Compounds
 - Ions are given a subscript to indicate the amount of that ion present in the compound (when adding a subscript to a PAI, you must have parentheses)
- 1. Chemical compounds must have a **net charge of** ______(Both + ions and ions must be present and their charges will cancel each other)
- 2. Find the charge of the cation and the anion
- 3. Crisscross the charge **without** the sign:
 - Cation_{charge of anion}Anion_{charge of cation} (if the charge is 1 do not write the charge)
 - If you have more than 1 of a polyatomic ion, you must use parentheses around the PAI
- 4. Simplify subscripts
- Examples:
 - \circ $\,$ Na and CI:
 - Mg and Cl
 - o Li and N
 - o Ca and S
 - Ba and hydroxide
- Practice: Write the ionic Compound for the following element combinations.
 - Calcium and Chlorine
 - Sodium and Sulfur
 - Lead (II) and Phosphorous
 - Calcium and Sulfate
 - Magnesium and Nitrogen
 - Aluminum and Oxygen
 - Lithium and Chlorite
 - Iron (IV) and Phosphite
 - Beryllium and Acetate

Name:

Naming Ionic Compounds

- Binary Type 1 Ionic Compounds (simple)
 - Composed of a metal and a nonmetal
 - Composed of elements that always contain the same charge
 - o Group ______, Group _____, Group _____, ____, ____, ____, ____, ____, ____, ____, and
- Binary Type 2 Ionic Compounds (Roman Numerals)
 - Composed of a metal and a nonmetal
 - Composed of metals can form two or more different charges
 - _____ Metals and _____ group metals

Naming Binary Type 1

- The ______ is named first and the ______ is named second
- The simple cation takes its name from the element. (ex. calcium would be calcium)
- The simple anion takes the name from the element, drop the ending, and adds ide (ex. Sulfur \rightarrow sulfide; oxygen \rightarrow oxide)
- Examples:
 - Name Ionic compound containing Ca and Br
 - CaBr₂
 - Cation: Ca is ______
 - Anion: Br is ______ → _____ Answer:
 - Name the Ionic compound containing Sr and P
 - Sr₃P₂
 - Cation: Sr is ______
 Anion: P is ______ Answer: ______
- Examples: Name each of these compounds.
 - CsF o ZnS o KCl \circ Al₂S₃ \circ BaH₂ \circ Mgl₂ AICI₃ \circ CaBr₂

Naming Binary Type 2

- Some Cations can form multiple charges.
 - \circ Example: Pb²⁺ and Pb⁴⁺, Cr²⁺ and Cr²⁺ and Cr³⁺, Fe²⁺ and Fe³⁺, Au⁺ and Au³⁺
- Chemist decided to use ______ to specify charge.
 - Examples:
 - \circ FeCl₂ = Iron (II) Chloride
 - FeCl₃ = Iron (III) Chloride

The difference in type two naming is the roman numeral

- The old way of naming these compounds was to use the ending –ous for the lower charger and –ic for the higher charge.
 - Examples: FeCl₂ = Ferrous Chloride FeCl₃ = Ferric Chloride
- Practice: Write the name of each compound
- CoCl₃

Cul

- Fe₂O₃
- MnO₂ SnBr₄

CuCl

HgCl₂

- PbS

HgO

N	a	m	e	•
1.4	u		I.C.	٠

Naming Ternary Ionic Compounds

- Ternary lonic compounds are formed when there are ______two elements (i.e. there are polyatomic ions present)
- Ternary can be type 1 or type 2 depending on the cation
- Naming Rules:
 - The ______ is named first and the ______ is named second
 - The simple cation takes its name from the element. (ex. calcium would be calcium; ammonium would stay ammonium)
 - If the cation is type 2, then you must indicate the charge of the cation ion using roman numerals (ex: $Fe^{+3} \rightarrow Iron (III); Pb^{+2} \rightarrow Lead (II))$
 - If the anion is a polyatomic ion, you use the name of the polyatomic ion (ex. Sulfate \rightarrow sulfate; hydroxide \rightarrow hydroxide)
 - If the anion is NOT a polyatomic ion, then follow the type 1 binary ionic compounds rules
 - Examples: Name the ionic compound containing sodium and sulfate (Na₂SO₄)
 - Cation: Na is ______
 - Anion: SO₄ is ______ → _____
 - Answer:
 - Name the ionic compound containing aluminum acetate $(Al(C_2H_3O_2)_3)$ 0

 - Anion: ______→ _____ •
 - Answer:
 - Name the ionic compound containing Mn^{+4} and Chlorate ($Mn(ClO_3)_4$) 0
 - Cation: ______
 - Anion: ______ → _____ •
 - Answer:
 - Practice: Write the name for the following ternary ionic compounds 0
 - Zn(OH)₂
 - Be_2SO_4
 - Ga(NO₂)₃
 - NH₄OH