\qquad

Unit 13: Rates and Equilibrium- Funsheets

Part A: Reaction Diagrams

1) Answer the following questions based on the potential energy diagram shown here:
a. Does the graph represent an endothermic or exothermic reaction? \qquad
b. Label the position of the reactants, products, and activated complex.
c. Determine the heat of reaction, $\Delta \mathrm{H}$, (enthalpy change) for this reaction. \qquad

Reaction pathway
g. Draw a dashed line on the diagram to indicate a potential energy curve for the reaction if a catalyst is added.
2) Sketch a potential energy curve below that is represented by the following values of $\Delta \mathrm{H}$ and Ea (activation energy). You may make up appropriate values for the y -axis (potential energy). $\Delta \mathrm{H}=-100 \mathrm{~kJ}$ and $\mathrm{Ea}=20 \mathrm{~kJ}$
3) Sketch a potential energy curve below that is represented by the following values of $\Delta \mathrm{H}$ and Ea (activation energy). You may make up appropriate values for the y-axis (potential energy). $\Delta \mathrm{H}=+45 \mathrm{~kJ}$ and $\mathrm{Ea}=100 \mathrm{~kJ}$

4) Answer the following questions based on the potential energy diagram shown here:
a. Does the graph represent an endothermic or exothermic reaction?
b. Determine the heat of reaction, $\Delta \mathrm{H}$, (enthalpy change) for this reaction.
c. How much energy is released or absorbed during the reaction?
d. How much energy is required for this reaction to occur? \qquad

1) Calculate the heat of reaction for: $\mathrm{PbCl}_{2(\mathrm{~s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{PbCl}_{4())} \Delta \mathrm{H}=$?

Given the following: \quad| $\mathrm{Pb}(\mathrm{s})+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})} \quad \Delta \mathrm{H}=-359.40 \mathrm{~kJ}$ | |
| :--- | :--- |
| | $\mathrm{~Pb}(\mathrm{~s})+2 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{PbCl}_{4(\mathrm{l})} \Delta \mathrm{H}=-329.30 \mathrm{~kJ}$ |

2) From the following heats of reaction: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-196.00 \mathrm{~kJ}$

$$
2 \mathrm{~S}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-790.00 \mathrm{~kJ}
$$

Calculate the heat of reaction for: $\quad \mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \Delta \mathrm{H}=$? kJ
3) Given the following equations: $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Delta \mathrm{H}^{\circ}=-1170 \mathrm{~kJ}$

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}^{\circ}=-1530 \mathrm{~kJ}
$$

Using these two equations, determine the heat of formation, $\Delta \mathrm{H}_{\mathrm{f}}$, for nitrogen monoxide. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
4) From the following heats of reaction:

$$
\begin{array}{ll}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-483.6 \mathrm{~kJ} \\
3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=+284.6 \mathrm{~kJ}
\end{array}
$$

Calculate the heat of the reaction for: $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
5) Given the following data:

$$
\begin{array}{cc}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) & \Delta \mathrm{H}=+180.7 \mathrm{~kJ} \\
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-113.1 \mathrm{~kJ} \\
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-162.3 \mathrm{~kJ}
\end{array}
$$

Use Hess's law to calculate $\Delta \mathrm{H}$ for the following reaction: $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{NO}(\mathrm{g})$
6) The standard heats of formation of $\mathrm{HCl}(\mathrm{g})$ and $\mathrm{HBr}(\mathrm{g})$ are $-92.0 \mathrm{~kJ} / \mathrm{mol}$ and $-36.4 \mathrm{~kJ} / \mathrm{mol}$ respectively. Diatomic gases have a heat of formation of 0 kJ Using this information, calculate $\Delta \mathrm{H}$ for the following reaction:
$\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{HBr}_{(\mathrm{g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})}$
7) Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction: $2 \mathrm{LiOH}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{f}} \mathrm{LiOH}(\mathrm{~s})=-487.23 \mathrm{~kJ} / \mathrm{mole} \\
& \Delta \mathrm{H}_{\mathrm{f}} \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})=-1215.6 \mathrm{~kJ} / \mathrm{mole} \\
& \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-285.85 \mathrm{~kJ} / \mathrm{mole} \\
& \Delta \mathrm{H}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

8) Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction: $2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-285.8 \mathrm{~kJ} / \mathrm{mole} \\
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{HCl}} \mathrm{HC}(\mathrm{~g})=-92.3 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

9) Calculate $\Delta H^{\circ}{ }_{f}(\mathrm{~kJ})$ for the following reaction from the listed standard enthalpies of formation: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{NH}} \mathrm{NH}_{3}(\mathrm{~g})=-46.1 \mathrm{~kJ} \\
& \Delta \mathrm{H}_{\mathrm{f}} \mathrm{NO}(\mathrm{~g})=+90.2 \mathrm{~kJ} \\
& \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=-241.8 \mathrm{~kJ}
\end{aligned}
$$

10) The standard enthalpy of formation of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, is $-103.6 \mathrm{~kJ} / \mathrm{mole}$. Calculate the heat of combustion of $\mathrm{C}_{3} \mathrm{H}_{8}$. The heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are $-394 \mathrm{~kJ} / \mathrm{mole}$ and $-285.8 \mathrm{~kJ} /$ mole respectively. Diatomic molecules have a heat of formation of $0 \mathrm{~kJ} /$ mole. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
11) The standard enthalpy of formation of propyne, $\mathrm{C}_{3} \mathrm{H}_{4}$, is $+185.4 \mathrm{~kJ} / \mathrm{mole}$. Calculate the heat of combustion of $\mathrm{C}_{3} \mathrm{H}_{4}$. The heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are $-394 \mathrm{~kJ} / \mathrm{mole}$ and $-285.8 \mathrm{~kJ} /$ mole respectively.
$\mathrm{C}_{3} \mathrm{H}_{4}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
12) The standard enthalpy of formation of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, is $-277.7 \mathrm{~kJ} / \mathrm{mole}$. Calculate the heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. The heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are $-394 \mathrm{~kJ} / \mathrm{mole}$ and $-285.8 \mathrm{~kJ} / \mathrm{mole}$ respectively.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Part C: Vocabulary and Concepts

1) Fill in the blanks: When the products have \qquad potential energy than the reactants, the ΔH values is positive. When the products have \qquad potential energy than the reactants, the ΔH values is negative.
2) Indicate whether the following are endothermic (ENDO) or exothermic (EXO):
a.

The burning of wood to produce a hot flame.
b. $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{Fe} 2 \mathrm{O} 3(\mathrm{~s})+$ energy
c. A test tube that feels cold to the touch after two substances have been mixed.
d. \qquad $\mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CF}_{4}(\mathrm{~g})$ $\Delta H^{\circ}=-680 \mathrm{~kJ}$
3) According to the Collision Theory, in order for a reaction to occur molecules must \qquad with enough \qquad and in the proper \qquad .
4) Explain why all reactions have an activation energy, using your knowledge of collision theory.
\qquad
\qquad
5) Describe how the activation energy of a reaction affects the overall rate of the chemical reaction.
6) Model the following reaction and use your model to explain how the atoms are rearranged. Be sure to balance and include a key. $\quad ـ_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
\square
\qquad
\qquad
7) What is a reversible reaction?
8) What is an activated complex?
9) A \qquad speeds up a chemical reaction by lowing the \qquad energy.
10) What is enthalpy? \qquad
11) What is Hess's Law? \qquad
12) Circle the correct answer: If something is (endothermic/exothermic) more heat goes from surroundings into the system. The $\Delta \mathrm{H}$ value is (positive/negative).
13) Circle the correct answer: If something is (endothermic/exothermic) more heat goes from the system into the surroundings. The $\Delta \mathrm{H}$ value is (positive/negative).
14) What law explains that during a chemical reaction mass is not created or destroyed just rearranged to create new products? \qquad
15) What law explains that energy is not created or destroyed just transferred between system and surroundings?

1) Write the following equilibrium expression in each box:
a. $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \leftarrow \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \quad$ a.
b. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
c. $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longleftrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$ (l)
d. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\leftarrow \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
e. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
f. $2 \mathrm{Li}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longleftrightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{LiCl}(\mathrm{aq})$

b.
f.
f.
.

2) Equilibrium is established in the reversible reaction: $2 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \longleftrightarrow \mathrm{A}_{2} \mathrm{~B}(\mathrm{aq})$.

The equilibrium concentrations are $[A]=0.55 \mathrm{M},[B]=0.33 \mathrm{M}$, and $\left[\mathrm{A}_{2} \mathrm{~B}\right]=0.43 \mathrm{M}$. What is the equilibrium expression and value of the equilibrium constant, K_{c} for this reaction?
3) What is the equilibrium expression and equilibrium constant if the equilibrium concentrations are as follows:
PCl_{5} is $0.0096 \mathrm{M}, \mathrm{PCl}_{3}$ is 0.0247 M , and Cl_{2} is 0.0247 M ? $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \leftarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
4) At a certain temperature, a container has an equilibrium mixture consisting of 0.102 M of $\mathrm{NH}_{3}, 1.03 \mathrm{M} \mathrm{N}$, and 1.62 M of H_{2}. Calculate the K_{c} for the equilibrium system. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
5) What is the equilibrium expression and equilibrium constant if the equilibrium consists of $10.0 \mathrm{~g} \mathrm{of} \mathrm{NaOH}, 0.50 \mathrm{M}$ $\mathrm{HCl}, 1.0 \mathrm{LH} \mathrm{H}_{2} \mathrm{O}$, and $0.88 \mathrm{M} \mathrm{NaCl} . \quad \mathrm{NaOH}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \longleftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaCl}(\mathrm{aq})$
6) At a given temperature, the K_{c} for the reaction below is 1.40×10^{-2}. If the concentrations of H_{2} and I_{2} at equilibrium are $2.00 \times 10^{-4} \mathrm{M}$, find the concentration of HI .
$2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

Part E: Le Chatelier's Principle

1) State Le Chatelier's Principle: \qquad
2) Predict which way the following equilibrium systems will shift when the total pressure is increased. (Note: some may have no shift)
a. $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NO}(\mathrm{g})$
b. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
c. $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is a colorless gas and $\mathrm{NO}_{2}(\mathrm{~g})$ is a dark brown gas. Use Le Chatelier's principle to explain why a flask filled with $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ will get darker when heated. Use the equation: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+$ heat $\leftarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
\qquad
\qquad
4) List at least 3 ways to increase amount of oxygen gas in the following reaction.

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longleftrightarrow \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+187.00 \mathrm{~kJ}
$$

a.
b.
c.
5) Complete the following chart by writing left, right, or none for the equilibrium shift. Write decrease, increases, or remains the same for the concentrations of reactants and products.
$12.6 \mathrm{kcal}+2 \mathrm{HCl}(\mathrm{aq}) \leftarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Stress	Equilibrium Shift	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{Cl}_{2}\right]$	[HCl]
1.Add H_{2}	Left	-	decreases	increases
2.Add Cl			-	
3.Add HCl				-
4.Remove H_{2}		-		
5.Remove Cl_{2}			-	
6.Remove HCl				
7.Increase Temperature				
8.Decrease Temperature				
9.Increase Pressure				
10.Decrease Pressure				

$$
\mathrm{Ca}^{+2}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq})+10.6 \mathrm{kcal} \longleftrightarrow \mathrm{CaSO}_{4}(\mathrm{~s})
$$

(Remember that pure solids and liquids do not affect equilibrium values.)

Stress	Equilibrium Shift	Amount of $\mathrm{CaSO}_{4}(\mathrm{~s})$	$\left[\mathrm{Ca}^{+2}\right]$	$\left[\mathrm{SO}_{4}{ }^{-2}\right]$
1.Add $\mathrm{CaSO}_{4}(\mathrm{~s})$		-		
2.Add $\mathrm{CaCl}_{2}\left(\right.$ adds $\left.\mathrm{Ca}^{+2}\right)$			-	
3.Add $\mathrm{MgSO}_{4}\left(\right.$ adds $\left.\mathrm{SO}_{4}{ }^{-2}\right)$				-
4.Remove SO_{4}^{-2}				-
5.Increase temperature				
6. Decrease temperature				
7. Increase Pressure				
8. Decrease Pressure				

Part F: Vocabulary and Concepts

1) Provide an example of a heterogeneous reaction and an example of a homogeneous reaction. Support your answer.
2) List 5 factors the affect the rate of a reaction:
a.
b.
c.
d.
e.
3) Using the collision theory explain why the rate of a reaction increases when pressure is increased.
4) The process of milk spoiling is a chemical reaction. Using your knowledge of rates of chemical reactions and collision theory, explain why we keep milk in the refrigerator.
5) It has been observed that more gas station fires occur on hot days than on cold days. Explain this phenomenon using your knowledge of collision theory.
6) What is chemical equilibrium?
7) What is equal at chemical equilibrium?
8) What is constant at chemical equilibrium?
9) At the macroscopic level a system at equilibrium appears to be unchanging. Is it also unchanging at the molecular level? Explain.
10) True or False: At equilibrium the amount of reactants is equal to the amount of products.
11) What is the formula for writing an equilibrium expression?
12) What do brackets [] indicate? \qquad
13) List 2 examples of enzymes and explain their function.
14) Model a reaction at equilibrium. Be sure to consider concentration, the fact the equilibrium is dynamic, and rates of forward and reverse reactions. Be sure to include a key. $A+3 B \longleftrightarrow \rightarrow A_{3} B$
