• •						
NI	р	r	Y	٦	Δ	٠
1 1	а	I	L	I	c	٠

Unit 11 Solutions- Guided Notes

Mixtures:

- What is a mixture and give examples?
- What is a pure substance?
- What are alloys?
- What is the difference between heterogeneous and homogeneous mixtures?

Solutions:

- What is a solution?
- Solute=
- Solvent=
- So, if I mix cream into my coffee, which is the solute and which is the solvent?
- Once the solute is evenly dissolved, what do you call the new coffee?

Characteristics of Solutions:

• List some characteristics and properties of solutions:

States of Matter of Solutions:

- Solutions are considered to be in _______state of matter but can be made up of any combination of states of matter for their ______and
- Can you think of an example of each?
 - Liquid in a Liquid: ______
 - o Gas in a Liquid: _____
 - Gas in a Gas:

 - Solid in a Solid:

Solubility:

- _____ refers to a solute's ability to be dissolved by the solvent.
- A substance is ______ if it is able to be dissolved in a given solvent.
- A substance is said to be ______ if it stays in its original state in the solvent (aka it does not dissolve)
- Liquids that dissolve in one another are called ______ and liquids that do not dissolve in one another are called _______

Solubility and Polarity:

 		means	s having opposite ends (a	end and a	end)			
covalent compounds o	0		substances include:	ionic compounds, ac	ids, and polar			
 		covalent compounds						
diatomic molecules Water is a	0		substances include: non-polar covalent molecules and					
 Water is a		diatomic molecules						
"Like dissolves like" o	0	Water is a	substance					
 	"Like d	lissolves like"						
 	0		substances dissolve other		substances			
 will not dissolve and vice versa Water is the (meaning it can dissolve most substances) because it is Why do you think that oil and water won't mix? is non-polar, so it is able to dissolve grease. end and a end There are 2 phases of dissolving: 	0		substances dissolve		substances			
Water is the (meaning it can dissolve most substances) because it is Why do you think that oil and water won't mix? o is non-polar, so it is able to dissolve grease. <u>Ng:</u> Remember: polar substances, like ionic compounds and water, are composed of a end and a end There are 2 phases of dissolving: o the process of attraction and association of molecules of a solvent with molecules or ions of a solute o Separation of solute molecules and spreading of solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium	0		will not dissolve	an	d vice versa			
most substances) because it is	Water	is the		(meanir	ng it can dissolve			
Why do you think that oil and water won't mix? o is non-polar, so it is able to dissolve grease. ng: Remember: polar substances, like ionic compounds and water, are composed of a end and a end There are 2 phases of dissolving:	most s	ubstances) because it is						
ng: Remember: polar substances, like ionic compounds and water, are composed of a end and aend There are 2 phases of dissolving: o the process of attraction and association of molecules of a solvent with molecules or ions of a solute o Separation of solute molecules and spreading of solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium	0		is non-polar, so	o it is able to dissolve	grease.			
Remember: polar substances, like ionic compounds and water, are composed of a end and a end There are 2 phases of dissolving:								
<pre>end and aend There are 2 phases of dissolving: the process of attraction and association of molecules of a solvent with molecules or ions of a solute o Separation of solute molecules and spreading of solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium</pre>	ing:							
There are 2 phases of dissolving: • the process of attraction and association of molecules of a solvent with molecules or ions of a solute • Separation of solute molecules and spreading of solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium	<u>ng:</u> Remen	nber: polar substances, l	ke ionic compounds and water,	are composed of a				
 the process of attraction and association of molecules of a solvent with molecules or ions of a solute Separation of solute molecules and spreading of solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium 	ng: Remen	nber: polar substances, l en	ke ionic compounds and water, and a	are composed of a end				
molecules of a solvent with molecules or ions of a solute o Separation of solute molecules and spreading c solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium	n <u>g:</u> Remer There a	nber: polar substances, l en are 2 phases of dissolving	ke ionic compounds and water, and a	are composed of a end				
 Separation of solute molecules and spreading c solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium 	ng: Remen There a 0	nber: polar substances, l en are 2 phases of dissolving 	ke ionic compounds and water, d and a g: the proces	are composed of a end ss of attraction and as	ssociation of			
solute through solution with more solvent surrounding For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium	ng: Remen There a	nber: polar substances, I en are 2 phases of dissolving molecules of a solvent	ike ionic compounds and water, d and a g: the proces with molecules or ions of a solut	are composed of a end ss of attraction and as e	ssociation of			
For example when sodium chloride (NaCl) dissolves in water, sodium chloride separates into sodium	ng: Remen There a o	nber: polar substances, l en are 2 phases of dissolving molecules of a solvent	ike ionic compounds and water, d and a	are composed of a end ss of attraction and as e n of solute molecules	ssociation of and spreading of			
	ing: Remen There 0	nber: polar substances, I en are 2 phases of dissolving molecules of a solvent solute through solutior	ike ionic compounds and water, d and a the proces g: the proces with molecules or ions of a solut Separation with more solvent surrounding	are composed of a end ss of attraction and as e n of solute molecules	ssociation of and spreading of			

Describing Solutions:

- Concentration=
- What is the difference in dilute and concentrated?

Saturation:

- Do you think you could dissolve a whole bag of sugar in a cup of water? Why or why not?
 - What is a saturation limit?
 - Can saturation limits change? How?
- What is a saturated solution?
 - How can you tell a solution is saturated?
- What is an unsaturated solution?
 - How can you tell a solution is unsaturated?
- What is a supersaturated solution?
 - \circ $\;$ How does a solution become supersaturated?
 - How can you tell a solution is supersaturated?

Solubility Curves:

•

A solubility curve is a ______ representation of solubility of substances

Solubility curves show how much of a

can be dissolved in 100g or 100mL of

- _____ at a given temperature
- What happens to solubility of a substance as temperature increases?
 - Do any substances break this rule?
 - Why?
- On a solubility curve, the _____ indicate the concentration of a **saturated** solution – the amount of solute that will dissolve at that specific temperature.
- Values on the graph • a curve represent unsaturated solutions solute could be dissolved at that temperature.
- Answer the questions and include units
- 1. Which solute is most soluble at 10°C?
- 2. Which solute is least soluble at 40°C?
- 3. How much solute is in a saturated solution of ammonia at 25°C?
- 4. If KNO₃ has 70g of solute dissolved at 60°C is the solution saturated, unsaturated, or supersaturated?
- 5. If a solution of NaCl has 20g of solute dissolved at 90°C is the solution saturated, unsaturated, or supersaturated?

Rate of Dissolution:

- •
- Rate of dissolution is how ______ something dissolves
- If you are making some sweet tea and you are trying to dissolve a lot of sugar, how can you make the process of the sugar dissolving faster?

Grams of solute

- 3 factors affect the rate of dissolving: , and _____ - the dissolving process occurs at the surface of the 1. solid being dissolved. The more surface exposed the _____ the dissolving. Which would dissolve faster: a cube of sugar or crushed sugar? 2. _____- agitation such as ______ _____, or _____ removes newly dissolved particles form the solid surface and continuously exposes the surface to fresh solvent. ______- higher temperature causes the solvent to move more 3. rapidly, thus increasing the rate of dissolving for ______, but decreasing the molecules move too ______ and escape rather than dissolve
 - b. This is shown on a solubility curve by _____

Temperature (°C)

Measuring Concentration:

0

0

- ing Concentration: A ______ solution or a ______ solution or a ______ solution is a solution • whose concentration is *accurately known*.
 - There are multiple ways to measure concentration mathematically
 - _____: (very similar to percent composition) 0
 - : has to do with acids and bases
 - _____: important for colligative properties
 - : the most common way to express concentration 0 ___

Molarity

- Most commonly used expression of concentration
- Molarity (M)=

- Number of ______ of solute dissolved in a liter of solution
- Represented by _____ and units are _____ (Molar)
- To make a 1M solution of aqueous NaCl, measure 1 mole (which has a mass of 53g) of NaCl and add 1 Liter of water.
 - \circ 1 mole /1 L = 1 Molar (M)
- **Molarity Practice:** .
 - 1. If 5.7 g KNO₃ was dissolved in 233 mL of water, what is the molarity of the solution? (Hint you have to convert grams to moles and mL to L)
 - 2. What is the molarity of a solution that contains 42g of KCl in a 7.98L sol'n?
 - 3. How many grams of NaOH are required to prepare 200mL of a 0.45M solution?
 - 4. How many liters of a 0.85M solution of sodium sulfate contains 0.35 moles of sodium sulfate?
 - 5. How would you prepare 0.55 L of a 0.7M solution of sodium chloride?
 - 6. How would you prepare 800 mL of a 1.2M solution of lithium hydroxide?

Colligative Properties:

•

- is the number of particles a solute breaks
- into when it dissolves. is a property that is dependent only on the number of solute particles present in solution (aka depends on the molality and dissociation factor) Examples of colligative properties are ______and
- An increase or decrease in concentration will effect colligative properties

- When concentration is increased
 - The freezing point is always ______ this is called freezing point depression
 - And the boiling point is always ______ this is called boiling point elevation
 - Which would freeze faster a 0.50M solution of salt water or a 1.0M solution of salt water?
 - Which would boil faster?
 - Why do we salt the roads when is snows?
 - When salt is added to the roads the concentration (increases/decreases). This causes the (freezing point/boiling point) to (increase/decrease). This helps because...
 - Why do we add salt to the pot of boiling water when we cook noodles?
 - When salt is added a pot of boiling water when cooking noodles the concentration (increases/decreases). This causes the (freezing point/boiling point) to (increase/decrease). This helps because...

Dilutions:

- If you made a solution of sweet tea (solute= ______ and solvent=_____), if it was not sweet enough, how could you increase the concentration?
 - o If it was too sweet, how could you decrease the concentration?
- ______ is the process of adding _______ to a solution to
 ______ the concentration of solution
- The actual number of *moles of the solute* never changes
- Only the amount of solvent changes to reduce the _____
- The pictures to the right show a solution throughout a dilution process:
 - 1. Which solution is the most concentrated?
 - 2. Which is the most dilute?
 - 3. What happens to the volume as we dilute the solution?
 - 4. What happens to the amount of solvent throughout the dilution?
 - 5. What happens to the amount of solute throughout the dilution?
 - 6. What happens to the concentration of the solution throughout the dilution?

Dilution Calculations:

- When you need to dilute a solution, you know 3 of the following 4 things:
 - the molarity of what you started with (_____),
 - the new molarity of the solution you want to make (_____)
 - The volume of the solution you start with (_____)
 - The volume of the new solution (_____)
- Use the dilution equation $M_1V_1 = M_2V_2$ to solve for the last variable.
- Volume can be in units of _____ or _____
 - 1. Calculate the molarity that results when 250 mL of water is added to 125 mL of .251 M HCl.
 - 2. Suppose you wished to make a 0.879 L of 0.250 M aqueous silver nitrate by dilution a stock solution of a 0.675M aqueous silver nitrate. What will the volume of the stock solution would you need to use?
 - 3. Calculate the new concentration when 50.0mL of water is added to 735mL of 1.25M NaCl.

of the solution.

Solution I Volume = 1.0 L

Volume = 2.0 L

