\qquad

Unit 11 Solutions- Funsheets
Part A: Solubility Curves- Answer the following questions using the solubility curve below. Include units!

1) What mass of each solute will dissolve in 100 mL of water at the following temperatures?
a. KNO_{3} at $70^{\circ} \mathrm{C}=$ \qquad
b. NaCl at $100^{\circ} \mathrm{C}=$ \qquad

2) Which of the substances (if any) on the solubility curve gases? How do you know?
3) Which compound is most soluble at $20{ }^{\circ} \mathrm{C}$?
4) Which is the least soluble at $40{ }^{\circ} \mathrm{C}$?
5) Which substance is least soluble at $10^{\circ} \mathrm{C}$?
6) How much $\mathrm{NH}_{4} \mathrm{Cl}$ can be dissolved in $\mathbf{2 0 0} \mathrm{g}$ of $\mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$?
7) How much NaCl can be dissolved in $\mathbf{5 0 0} \mathrm{g}$ of $\mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$? \qquad
8) A mass of 80 g of KNO_{3} is dissolved in 100 g of water at $50{ }^{\circ} \mathrm{C}$. The solution is heated to $70^{\circ} \mathrm{C}$. How many more grams of potassium nitrate must be added to make the solution saturated?
9) A mass of 70 g of NaNO_{3} is dissolved in 100 g of water at $10{ }^{\circ} \mathrm{C}$. The solution is heated to $35 \circ \mathrm{C}$. How many more grams of sodium nitrate must be added to make the solution saturated?
10) On a solubility curve, the points on the curve indicate a \qquad solution.
11) Values on the graph \qquad a curve represent unsaturated solutions.

Label the following solutions as saturated, unsaturated, or super saturated. If unsaturated, write how much more solute can be dissolved in the solution.
12) A solution that contains 70 g of NaNO_{3} at $30^{\circ} \mathrm{C}$ (in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$): \qquad
13) A solution that contains 50 g of $\mathrm{NH}_{4} \mathrm{Cl}$ at $50^{\circ} \mathrm{C}$ (in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$): \qquad
14) A solution that contains 70 g of KI at $0^{\circ} \mathrm{C}$ (in 100 mL H O): \qquad
15) A solution that contains 20 g of KClO_{3} at $50^{\circ} \mathrm{C}$ (in 100 mL H O): \qquad
16) A solution that contains 20 g of NH_{3} at $80^{\circ} \mathrm{C}$ (in $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$): \qquad
\qquad

Part B: Solutions Vocabulary Part 1
Fill in the blank using the most appropriate vocabulary word or phrase.

1) A solution is a \qquad mixture.
2) In a carbonated drink like Dr. Pepper, the solute is in the \qquad state of matter, the solvent is in the \qquad state of matter, and together they make a solution that is in the \qquad state of matter.
3) Liquids, such as antifreeze and water, which dissolve in one another are said to be
\qquad , while liquids that do not dissolve in one another, such as salad oil and vinegar are said to be \qquad _.
4) Brass, a mixture of copper and zinc, is an example of a solid solution known as a(n) \qquad .
5) Because the particles in a solution are so small, \qquad cannot be used to separate the components no do the components settle upon standing.
6) The rate of dissolution expresses how \qquad a solute dissolves in a solvent.
7) A solution is \qquad if it contains a relatively large amount of solute. A solution is \qquad if it contains a relative small amount of solute.
8) List at least 3 ways concentration is measured in.
9) What is the most common way to express concentration in chemistry?
10) List an example of each of the following types of solutions:
a. Solid solute in liquid solvent: \qquad
b. Gas solute in liquid solvent: \qquad
c. Solid solute in solid solvent: \qquad
d. Liquid solute in liquid solvent:
11) A \qquad is a graphical representation of solubility of substances.
12) A \qquad solution is a solution at its maximum concentration for a given temperature and pressure.
13) A \qquad solution is a solution that has not reached its maximum concentration.
14) A \qquad solution is a solution that contains more solute than it saturation limit.

Answer the following questions in complete sentences.

15) Explain the phrase "like dissolves like". Give an example and a non-example.
16) What substance is the universal solvent and how did it get this nickname?
17) Give an example of a solution and describe the solute and solvent.
18) Explain the terms solubility, soluble, and insoluble.
\qquad
19) Is it possible to dissolve a 5 pound back of flour in a cup of milk? Explain why or why not.
20) How are supersaturated solutions made?
21) What is concentration and why is it important?
22) Explain how a solution can be both dilute and saturated at the same time.
23) How would you prepare 1 L of a 0.5 M solution of HCl ?
24) What is the most important solution in your life and why?
25) Describe the process of NaCl dissolving in water. Be detailed and specific.
26) If you were making a solution of lemonade and you wanted the solute to dissolve faster, list at least 3 different things you could increase the rate of dissolution.
\qquad

Part C: Molarity- Answer the following questions. Show ALL WORK and include units!

1) What is the formula and units of molarity?
2) Calculate the molarity of 0.060 moles NaHCO_{3} in $1500 . \mathrm{mL}$ of solution.
3) What is the molar concentration of 1.0 mol of KCl dissolved in $750 . \mathrm{mL}$ of solution?
4) Calculate the molarity of 34.2 grams of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ in $500 . \mathrm{mL}$ of solution.
5) Calculate the number of moles of NaCl contained in 0.500 L of a 1.5 M solution.
6) Calculate the number of moles of NaOH contained in $250 . \mathrm{mL}$ of a 0.05 M solution.
7) If 10.7 g of $\mathrm{NH}_{4} \mathrm{Cl}$ is dissolved in water to make 800 mL of solution, what will be its molarity?
8) Calculate the molarity of a solution prepared by dissolving 6.80 grams of AgNO_{3} in enough water to make 2.50 liters of solution.
9) What volume of solvent is required to prepare of $0.700 \mathrm{M} \mathrm{CaCl}_{2}$ using $0.85 \mathrm{~g} \mathrm{of} \mathrm{CaCl}_{2}$?
10) How many moles, of CaCl 2 will be required to prepare the above solution?
11) How many grams of KNO_{3} will be required to prepare 800 mL of 1.40 M KNO ?
12) Calculate the volume of a 1.25 M solution of HCN made from 31.0 grams of HCN .
13) Calculate the volume of a 3.50 molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ made from 49.0 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
14) Your teacher asks you to prepare 500 mL of a 2.75 molar solution of NaCl for a lab. Write a step-by-step procedure describing how you would carry out this task.
15) Your teacher asks you to prepare 250 mL of a 0.35 M solution of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ for an upcoming lab. Write a step-by-step procedure describing how you would carry out this task.
\qquad

Part D: Colligative Properties- Answer the following questions.

1) What is a colligative property?
2) What property are colligative properties dependent on?
3) What is a dissociation factor?
4) List 2 examples of colligative properties.
5) Which would freeze faster a 0.50 M solution of sugar water or a 1.0 M solution of sugar water?
\qquad Which would boil faster? \qquad
6) How will adding 10.0 g of sodium chloride to a 0.10 M solution of salt water affect...?
a. Concentration?
Increase or Decrease
b. Boiling Point?
Increase or Decrease
c. Freezing Point?
Increase or Decrease
7) How will adding 100 mL of solvent to a 0.10 M solution of salt water affect...?

a. Concentration?	Increase or Decrease
b. Boiling Point?	Increase or Decrease
c. Freezing Point?	Increase or Decrease

8) Using colligative properties, in complete sentences explain why we add antifreeze to the solution in our engines in the winter time. Discuss concentration, freezing point, and importance of antifreeze.
9) Create a model of the molecular level of the solution before and after antifreeze was added.

| BEFORE | AFTER |
| :--- | :--- | :--- |
| | |
| | |
| | |
| KEY | |

\qquad

Part E: Dilutions- Answer the following questions. Show ALL WORK and include units.

1) What is a dilution?
2) What is the mathematical formula for calculating dilutions?
3) Describe the step-by-step process of diluting 0.50 L of a 1.0 M solution of NaCl to a 0.50 M solution of NaCl .
4) In question number 2 , during the dilution, what happened to...
a. The concentration?

Increase - Decrease - Remain the same
b. The volume of the solution?
c. The amount of solvent?

Increase - Decrease - Remain the same
d. The amount of solute?

Increase - Decrease - Remain the same
Increase - Decrease - Remain the same
5) Model the solution on the molecular level from number 2 before and after the dilution. Include a key if necessary.
BEFORE
\qquad

Answer the following questions. Show ALL WORK and include units.
6) If 45 mL of water is added to 250 mL of a $0.75 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution, what will the molarity of the diluted solution be?
7) If water is added to 175 mL of a 0.45 M KOH solution until the volume is 250 mL , what will the molarity of the diluted solution be?
8) How much 0.075 M NaCl solution can be made by diluting 450 mL of 9.0 M NaCl ?
9) If 550 mL of a 3.50 M KCl solution are set aside an allowed to evaporate until the volume of the solution is 275 mL , what will the molarity of the solution be?
10) How much water would need to be added to 750 mL of a 2.8 M HCl solution to make a 1.0 M solution?
11) If I add water to 100 mL of a 0.15 M NaOH solution until the final volume is 150 ML , what will the molarity of the diluted solution be?
12) How much 0.05 M HCl solution can be made by diluting 250 mL of a 10 M HCl solution?
13) I have 345 mL of a 1.5 M NaCl solution. If I boil the water until the volume of the solution is 250 mL , what will the molarity of the solution be?
14) How much water would I need to add to 500 mL of a 1.0 M KCl solution to make a 2.4 M solution?

