

Specific Heat FunSheets

POTENTIAL ENERGY DIAGRAM WORKSHEET

- 6. How much energy did this reaction start with?
- 7. How much energy did this reaction finish with?
- 8. Did this reaction gain or lose energy? How much?
- 9. Is the Q value positive or negative?
- 10. Is this an endothermic or exothermic reaction?

- 1. How much energy did this reaction start with?
- 2. How much energy did this reaction finish with?
- 3. Did this reaction gain or lose energy? How much?
- 4. Is the Q value positive or negative?
- 5. Is this an endothermic or exothermic reaction?

Name:	Period:

Energy Q= mcΔT

BEWARE! This funsheet gets heated.

Name	Class paried	Data	
. vanie	Class period	Date	

Substance	J/ g/°C or J/ g/K	cal/g/°C or cal/g/K
Water (0 °C to 100 °C)	4.184	1.000
Methyl Alcohol	2.549	0.609
Ice (-10 °C to 0 °C)	2.093	0.500
Steam (100 °C)	2.009	0.480
Benzene	1.750	0.418
Wood (typical)	1.674	0.400
Soil (typical)	1.046	0.250
Air (50 °C)	1.046	0.250
Aluminum	0.900	0.215
Marble	0.858	0.205
Glass (typical)	0.837	0.200
Iron/Steel	0.452	0.108
Copper	0.387	0.0924
Silver	0.236	0.0564
Mercury	0.138	0.0330
iold	0.130	0.0310
ead	0.128	0.0305

- Calculate the energy released (in Joules) when a 4,570 g piece of hot iron cools from 1000.° C to 20.0° C. Is this endothermic or exothermic?
- Calculate the energy needed to heat 60.0 g of aluminum from 100.° C to 250.° C. Is this endothermic or exothermic?
- Calculate the final temperature of 295 g of water, initially at 30.0° C, if 4,500 joules are added. (THIS IS A CHALLENGE QUESTION)

- 4. Using the specific heat values for lead, gold, mercury, and silver, which of these would require the smallest amount of heat to increase its temperature by 10°C (assume all samples have the same mass of 15 g)?
- A 35.2 g sample of an unknown metal requires 1251 J of energy to heat the sample by 25.0° C (assume it is initially 0.00°C). Calculate the specific heat capacity of this metal and identify the metal.
- If 7.24 kJ is applied to a 952-g block of metal, the temperature increases by 10.7° C. Calculate the specific heat capacity of the metal.
- 7. How many joules of heat are given off when 5.0g of water cools from 75° C to 25°C?
- 8. How many joules of heat are necessary to raise the temperature of 25.0 g of water from 10.0°C to 60.0°C?
- What is the specific heat of a substance if 25g of it absorbs 5000. J of heat when it warms from 40.°C to 50.°C?
- 10. How much heat is required to warm 350g of water from 20.°C to 80.°C?
- 11. What is the specific heat of iron if 300.g of iron requires 54300 J to increase its temperature from 22.4*C to 62.6*C? How does your answer compare to the chart?
- 12. The temperature of 250. g of water dropped from 90.0°C to 30.0°C. How much energy did the water lose?