\qquad

Specific Heat Guided Notes

Energy

-
- Two types of energy are \qquad and \qquad _.
- \qquad is a measure of average kinetic energy
- Energy can be measured in \qquad , \qquad , or \qquad (we use Joules)
form to another but can be neither created nor destroyed
- \qquad is used to represent heat energy
- According to the law of conservation of energy:
$Q_{\text {lost }}=Q_{\text {gained }}$
- When one object or reaction loses energy, that same amount of energy is gained by something else
- A reaction in which heat is lost/released is considered \qquad .
- A reaction in which heat is gained/absorbed is considered \qquad .
- Energy diagram:
- How much energy did this reaction start with?
- How much energy did this reaction finish with?
- Did this reaction gain or lose energy? How much?
- Is this an endothermic or exothermic reaction?

- How much energy did this reaction start with?
- How much energy did this reaction finish with?
- Did this reaction gain or lose energy? How much?
- Is this an endothermic or exothermic reaction?

Reaction Pathway
\qquad

Specific Heat Capacity

- Specific Heat Capacity- The amount of energy required to raise the temperature of \qquad gram of a substance by \qquad Celsius degree.
- Practice:
- How much energy would it require to raise 1 g of solid water by 1 C ?
- How much energy would it require to raise 1 g of iron $1^{\circ} \mathrm{C}$?
- Which substance requires the most energy to raise 1 g of substance by ${ }^{\circ} \mathrm{C}$?

Thermochemistry

- for pure substance in single phase of matter we can calculate how much Energy needed/used using the following equation: $Q=m C \Delta T$
$Q=$ \qquad in units of \qquad
$\mathrm{m}=$ \qquad in units of \qquad
$C=$ \qquad in units of \qquad
$\Delta \mathrm{T}=$ \qquad in units of \qquad

$$
\Delta T=T_{f}-T_{i}
$$

- When energy is released, Q \qquad 0
- When energy is absorbed, \mathbf{Q} \qquad 0
- Practice:

1. Determine the amount of energy (heat) in joules required to raise the temperature of 7.40 g water from $29.0^{\circ} \mathrm{C}$ to $46.0^{\circ} \mathrm{C}$? (the specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$)
2. Calculate the energy required to heat 454 g of water from $98.6^{\circ} \mathrm{C}$ to $5.40{ }^{\circ} \mathrm{C}$, the specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$.
3. A 1.6 g sample of an unknown metal requires 5.8 J of energy to change its temperature from $23^{\circ} \mathrm{C}$ to $41^{\circ} \mathrm{C}$. What is the specific heat of the unknown metal?
