Unit 3 Atomic Structure- Guided Notes

The Periodic Table

- ______ is credited for creating the first
 - version of the modern periodic table
- _____ is a chart showing all the elements arranged in columns in such a way that all the elements in a given column exhibit similar chemical properties
- The periodic table is organized in order of _______
- The periodic is organized in....
 - Columns called ______ or _____
 - Rows are called ______
- Where are the following types of elements located on the Periodic Table of Elements?
 - Metals: _____
 - Metalloids:
 - Nonmetals: ______
 - o ______ is the only metal touching the stair case
 - _______ is the only nonmetal on the left side of the stair case
- Properties of Metals, Nonmetals, and Metalloids:

Metals	Metalloids	Nonmetals

• Label the families and the number of valance electrons on the periodic table below:

Ι	II											III	IV	v	VI	VII	VIII
1	2											13	14	15	16	17	18
1 H 1.008																	2 He 4.003
3	4 D-		n				•					5	6	7 10 1	Å	9	10 DT-
6.941	9.012		Per	iodi	c I a	ible	of t	he E	lem	ents	5	10.811	12.011	1N 14.007	15.999	F 18.998	1 NC 20.180
11 Na 22,990	12 Mg 24,305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.066	17 Cl 35,453	18 Ar 39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	51.996	54.93	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37 Db	38 Sm	39 NZ	40 7 m	A1 NIL	42	43	44 Du	45 Dh	46 Dd	47	48	49 Tra	50 Sm	51 Sh	32 To	53 T	54 V 0
85.468	87.62	∎ 88,906	91.224	92,906	95.94	(98)	101.07	102.906	106.42	107.868	112,411	114.82	118.71	121.75	127.60	∎ 126.906	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.905	137.327	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
(223)	Ra 226.025	(262)	(261)	(262)	<u>Sg</u> (266)	(262)	(265)	1 MI (266)	(271)	(272)	(277)		(285)		(289)		(293)

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.93	167.26	168.934	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	\mathbf{U}	Np	\mathbf{Pu}	Am	Cm	Bk	Cf	Es	\mathbf{Fm}	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(260)	(259)

- Periodic Families
 - Elements in the same ______ have similar properties
 - ______ are the most reactive metals
 - o ______ are the most reactive non-metals
 - o ______ are inert (do not react)

The Atom

- Draw and label the parts of an atom
- Atomic Structure:

Particle	Charge	Mass	Location		
Proton					
Neutron					
Electron					

Amu stands for ______

The Periodic Table of Elements

- The whole number is the ______ this identifies the element
- # of protons = _____
- # of electrons = _____
- # of neutrons = _____
- Mass # = _____
- Mass # is ______
- Practice:
 - 1. How many protons are in Zinc?
 - 2. What is the atomic number of Calcium?
 - 3. What is the average atomic mass of Oxygen?
 - 4. How many neutrons are in Lithium?
 - 5. How many electrons are in Carbon?
 - 6. Why do the number of protons equal the number of electrons?

lons

If an atom gains or loses electrons, it is called an ______

```
Name:
```

 When an atom gains or loses an electron, its overall charge A positively charged ion is called a _______ _____ are formed by atoms ______ electrons A negatively charged ion is called an are formed from atoms ______ electrons Practice: 1. If a sodium atom loses an electron, what will its charge be? 2. How many electrons are in the following? a. Cl⁻¹ b. Ca²⁺ Isotope Notation/ Nuclear Symbol → 16 0 _2 ← Mass Number: Charge: • • _____ charge if lost electrons; _____ charge if gained electrons • Do not write _____ for neutral Atomic Number: _____ # electrons= • Nuclear Symbols ONLY contain
 numbers You may also see the following format: Element Name- Mass Number • • Example: Oxygen-16 Practice: 35 1. Write the nuclear symbol for gold. 2. What is the mass of chlorine to the right? 17 3. 4. What is the atomic number of chlorine-35? 238 +3 4. How many neutrons are in Uranium? 92 5. How many electrons are in Uranium? Atomic Mass The masses of protons, neutrons, & electrons are expressed in • _____. It is abbreviated as ______. The mass of a(n)... • proton is about _____ amu neutron is about _____ amu electron is almost ______ amu (1/1836 amu) •

The mass number of an element is the _____+

Isotopes

- Isotopes are atoms that have the same # of ______ (meaning it is the same ______) but a different # of ______ (meaning it has a different ______)
- The difference between an element & its isotope is the ______.

 Isotopes have a higher mass.
- Place the isotope's mass in the upper left corner of the chemical symbol of the element. Ex. ³⁷Cl

Average Atomic Mass

- The mass number is the mass of one isotope
- The average atomic mass is the mass of each isotope and how abundant it is in the universe
- The average atomic mass depends on the ______ of each isotope
 - ______ is the amount the isotope occurs in nature
 - For example: Abundance of Lithium
 - Lithium-6 is _____% abundant
 - Lithium-7 is _____% abundant
- Steps to calculating Average Atomic Mass:
 - Multiply the mass of each isotope by its percent abundance (remember %s are decimals; 85% as a decimal is 0.85)
 - Add you answers from number 1 together
 - Round your answer to 2 decimal places
- Practice:
 - 1. A sample of Cesium is 75% ¹³³Cs, 20% ¹³²Cs, and 5% ¹³⁴Cs. What is the average atomic mass?
 - 2. Carbon-12 is 98% abundant and Carbon-14 is 2% abundant. Calculate the average atomic mass of carbon.

Electrons

- Electrons are arranged in ______ or _____ around the nucleus of an atom.
- The energy levels and shells together are called the _______
- Electrons in the outer most shell are called ______
- •

Scientists

Scientists to know in this unit:

- Aristotle
- Democritus
- Boyle
- Dalton
- J.J. Thomson
- Millikan

Rutherford

determine the behavior of an atom

- Chadwick
- Bohr
- Schrodinger
- Heisenberg
- Mendeleev