Name:	
Unit 8 Chemical Reaction- Guided Notes Part 1	
Chemical Reactions	
A Chemical Reaction occurs when the of a s	ubstance changes.
<u>Chemical Reaction</u> : one or more substances are changed into one or more new substance of component	es by the
How do Chemical Reactions Occur?	
The describes the conditions for a reaction to occu	r
The collision theory states thatfor a chemical reaction to occur	s) must
Evidence of a Chemical Reaction	
• is produced	
A (a solid) is formed	
Odor/gas is released	
 bubbling from a gas being produ 	iced
• and/or a is produced	
Heat is	
• is produced	
• change along with another change	
• The of th	e products are
Chemical Equations	
•: A representation of a chemical reaction using	the formulas of the
• • • • • • • • • • • • • • • • • • •	nical reaction
(
 <u>:</u> the new substances formed during a chemica (l reaction
 : yields or a reaction arrow; separates reactants and products 	
$\circ X + Y \rightarrow XY;$	
oare reactants	
o is the product	

Signs and Symbols

Symbol	Meaning		
States of Matter			

- <u>Coefficients</u>: Number ______ of a substance; apply to ______ in compound/molecule
 <u>Subscripts</u>: number ______ an element; applies to ______ element
 (g), (l), (s): ______, ____, _____, ______
- (aq): _____ (dissolved in water)

Law of Conservation of Mass

- ______ is neither created nor destroyed in a chemical reaction
- The starting mass of ______ = the final mass of ______
- Must be satisfied when describing a reaction (satisfied by _____)
- Atoms are rearranged
- Same ______ of each element on both sides of the reaction arrow
- _____: Show amount of each substance. In front of a compound.

Apply to all elements in the compound.

- ______ are used to balance
- SUBSCRIPTS CAN NEVER BE CHANGED!!!
- H₂O: _____ Hydrogen atoms and _____ Oxygen atom
- 2 H₂O : _____ Hydrogens and _____ Oxygen atoms
- Coefficients show ______ of:

.

- Formula units or molecules involved
- Relative amounts expressed in moles

Balancing Chemical Reactions

- In order for an equation to reflect the Law of Conservation of Mass it must be
- The # of ______ of each element on the reactants side must ______ the # of ______ of each element on the products side.

•	A balanced equation has the same number of atoms on		sides of the equation.			
•	Tips to	to Remember:				
	0	NEVER CHANGE THE	when balancing an equation			
	0	Must use whole-number coefficients (no)			
	0	 No coefficient means 				
	 If you get stuck, multiple coefficients by and start over (combustion ONLY) 					
	1) Write <u>CORRECT</u> formulas for the reactant and product.					
	\circ Remember the 7 diatomic gases (H ₂ , Br ₂ , O ₂ N ₂ , Cl ₂ , I ₂ , F ₂)					
	2) Balance the number of atoms on both sides by adding coefficients. DO NOT change the subscripts					
•	Useful	tips to try:				
	0	Make an inventory				
	0	Rewrite water as				
	0	Balance as a group if a	appear on both sides of the equation			
	0	Balance and	last			
•	Ex.	$\underline{\qquad} MgCl_2 + \underline{\qquad} H_2O \rightarrow \underline{\qquad} Mg($	(OH) ₂ +HCl			
•	Practic	e: Aluminum sulfate reacts with barium chloride to forr	n aluminum chloride and barium sulfate.			

• Nitrogen gas plus hydrogen gas under pressure and at high temperature turn into ammonia.

5 Types of Chemical Reactions:

•	- 00	curs when	different compounds react to form
	new compounds.		
•		s when an	element replaces an element
•	- 0001	swhen	simple substances combine to form
-	more complex s	substance.	
•	occ	urs when bler substances	complex substance breaks down into
	•p	f	
•		e of ga	displacement reaction where a as to produce , and
Why ar	e Reaction Types Important?		
•	Most reactions will fit into one of the five	e types. (There are)
•	Scientist use the types of reactions to		·
•	Being able to write a chemical equation	does not necessarily mean	that the reaction will actually take place.
#1 Dou	ble Displacement Reactions		
•	different compounds rea	ct to form	new compounds
•	Also called double		
•	General formula: $AX + BY \rightarrow AY + BX$		
•	Double displacement reactions:		
	o of the r	products formed must be:	
	• A	(a solid)	
	• •	(water or will be indica	ated liquid)
	- ^		
	• A	(_ or will be indicated gas)
•	reac	tion: a special type of	displacement
	and	reacts with a	
•	Examples:	/) //)	
	○ Ca(OH) ₂ (aq) + 2HCl (aq) \rightarrow ○ 2N ₂ OH(aq) + Cu(Cl (aq) \rightarrow	$CaCl_2 (aq) + 2H_2O(l)$	
	 In each of the reactions one of the 	ne products is a	,, or a
•	Solubility:		
	o S	solid- a solid that re	eadily dissolves in water (aq)
	 solid- a solid that dissolves to such a small degree that it is not 		
	detectable to the naked eye (s)	- An insolub	le solid that forms during a chemical reaction
	(will look	_ or look like a) (s)

- Solubility Rules:
 - A set of rules/guidelines that indicate whether a substance will be ______ in water (____) or whether it will be ______ in water (____)
 - Located on the back of your periodic table
 - Soluble or Insoluble?
 - Sodium Sulfate
 - Calcium acetate
 - Fe(OH)₂

- AlPO₄ LiOH
- PbSO₄
- Double Displacement Practice: Write and balance the chemical equation for the following reactions. Indicating state of matter. If the reaction will not take place, write NR (for no reaction) after the reaction arrow.
 - Barium hydroxide reacts with hydrochloric acid to produce barium chloride and water.
 - Phosphoric acid reacts with ammonium hydroxide to produce ammonium phosphate and water.
 - Sodium chloride reacts with lithium bromide to form sodium bromide and lithium chloride.

#2 Single Displacement Reactions

- ______ element or a ______ molecule replaces an element that is An ____ part of a compound Also called single replacement General formula: $A + BX \rightarrow AX + B$. ______will replace ______and ______will replace What type of ions do metals form? • What type of ions do non-metals form? Requirements: follow the _____ : Arrangement of elements organized in the order of ease with which they undergo certain chemical reactions Used to predict products for single displacement reactions only There are _____ different activity series _____activity series • activity series • Elements can replace any element ______ it on the activity series, but NOT any element it • Activity decreases as you move the group • Metals ______ on the list will replace metals ______ on the list. A metal lower on the list will not replace a metal above it on the list; in this case we write _____for no reaction
 - The farther ______ 2 elements are on the series, the more likely the higher one will replace the lower one in a compound.

- Examples:
 - o Copper metal reacts with silver nitrate to form silver and copper nitrate

 \rightarrow

- Lithium metal reacts with water to form lithium hydroxide and hydrogen gas
- Practice: Reaction or No Reaction?
 - Ag (s) + Cu(NO₃)₂ (aq)
 - $F_2(g) + 2NaBr(aq)$ →
 - Mg(s) + Zn(NO₃)₂(aq) \rightarrow
 - 2 KBr(s) + $I_2(g)$ →

#3 Synthesis Reactions

- Occurs when ______ or more simple substances combine to form ______ substance that is more complex.
- Do not worry about states of matter
- General formula is $A + B \rightarrow AB$
- <u>Examples</u>:
 - \circ 2 Fe + 3 Cl₂ \rightarrow 2 FeCl₃
 - \circ 2 Na + Cl₂ → 2 NaCl
- Practice: Write the complete balanced chemical equation for the following synthesis reactions:
 - Copper metal reacts with oxygen gas to form copper (II) oxide
 - Aluminum metal reacts with oxygen gas to form aluminum oxide
 - o Calcium metal reacts with nitrogen gas to form calcium nitride
 - \circ Solid sulfur (S_8) reacts with oxygen gas to form sulfur dioxide

#4 Decomposition Reactions

- A complex substance breaks down into ______ or more simpler substances
- General formula: AB → A + B
- Do not worry about states of matter
- Examples:
 - \circ $\;$ Ammonium nitrate decomposes to form dinitrogen monoxide and water $\;$

 $NH_4NO_3 \rightarrow N_2O + 2H_2O$

o Sodium nitride decomposes to form sodium metal and nitrogen gas

 $2NaN_3 \rightarrow 2Na+3N_2$

- Practice: Write the complete balanced chemical equation (including states of matter) for the following synthesis reactions:
- - \circ 2C₂H₆(I) + 7O₂ (g) → 4CO₂ (g) + 6H₂O(I)
 - Practice: Balance the following. Remember balance hydrogen and oxygen last, and if you get stuck, multiply the hydrocarbon by 2 and start over (combustion ONLY)

 - \circ _____C₃H_{8(g)} + _____O_{2(g)} _____H₂O_(g) + _____CO_{2(g)}