Name: _____

Unit 6 Covalent Molecules- Guided Notes

- Covalent Bonding
 - A ______ is the force that holds two atoms together and makes them function as a unit
 - Atoms form bonds to become most ______ and to obtain an
 - Covalent Bonding: Electrons are ______ between two or more elements.
 - Always between 2 ______
 - Never involves ______

 - o Not all electrons are shared in a covalent bond. The unshared electrons are called
 - How is covalent bonding different than ionic bonding?
- Properties of Covalent Molecules
 - o _____ conductors
 - melting and boiling points
 - o Soft
 - o Brittle
 - Typically more ______ than ionic compounds
 - Many don't dissolve in water well
- Covalent Prefixes

Prefix	Number Indicated
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

- Rules for Naming Covalent Molecules
 - 1. The first element in the formula is named first, and the full element name is used.
 - 2. The second element is named as though it were an anion (ending gets _____).
 - 3. ______ are used to denote the numbers of atoms present (AKA represents the)
 - 4. The prefix mono- is never used for naming the first element. For example, CO is called carbon monoxide, NOT monocarbon monoxide.
 - 5. Prefix(not mono)1st element space prefix2nd element
 - Example:
 - BF₃

Name: ___

• Practice:

1.	NO	5.	CCI_4
2.	N ₂ O ₅	6.	IF_5
3.	CO ₂	7.	PCI ₅
4.	SiO ₃	8.	P₄H ₆

- Writing Formulas for Covalent Molecules _____ (do not crisscross)
 - Do NOT covalent molecules
 - Practice:
 - 1. Carbon Monoxide 4. Selenium dioxide
 - 2. Carbon tetrafluoride 5. Nitrogen Monoxide
 - 3. Dinitrogen Trioxide
- Diatomic Molecules
 - Diatomic molecules: A molecule composed of ______ of the same atoms
 - You must memorize the following diatomic molecules (Br I N Cl H O F)

Name	Formula

- End Video 1
- Lewis Structures
 - A ______ is a representation of a molecule showing how valence electrons are arranged among the atoms in the molecule or ion.
 - In writing Lewis Structures, we ONLY include _______ electrons
 - Electrons involved in bonding are called ______ pair. Electrons not involved in bonding are called ______ pairs or unshared pairs
 - Keep in mind the octet rule when drawing Lewis structures
 - Exceptions to the octet rule:

_____ and _____ only need a duet

- Steps to writing Lewis Structures
 - 1. Calculate the total number of valence electrons you . H and He need ; all other elements need _____. Add these all together.
 - 2. Calculate the total number of valence electrons you . This is the number of valence electrons each elements has according to the periodic table. Add these all together.
 - 3. Subtract NEED- HAVE to get your ______ number. Divide this number by_____ to tell you how many _____ you should draw.
 - 4. The ______ element in the formula is USUALLY your ______ atom (except _____, which cannot be a central atom). Write this element. Write the

remaining element as symmetrically as possible around the central atom. Draw the appropriate number of lines (step 3) to connect the central atom to the other atoms.

- 5. Draw ______ on elements to make them match the NEED once you've ran out of lines.
- Example: Write the Lewis Structure for water:
 - Need:
 - Have:
 - Share:
 - Lines:
 - Central Atom?
 - Drawing:
- \circ $\;$ Practice: Draw the Lewis Structure for the following molecules:
 - CCl₄
 - PH₃
- Lewis Structures with Multiple Bonds
 - Draw the Lewis Structure for Carbon Dioxide
 - Need:
 - Have:
 - Share:
 - Draw structure:
 - Is this correct? (Did we draw 4 lines?)
 - We need a double or triple bond
 - Correct Lewis Structures:
- Types of Bonds
 - Single Bond- a covalent bond in which ______ pair of electrons is shared by two atoms

Lines:

- Double Bond- A covalent bond in which ______ pairs of electrons are shared by two atoms
- Triple Bond- A covalent bond in which ______ pairs of electrons are shared by two atoms
- No more than _____ pairs can be shared

- Having multiple possible valid structures is referred to as having ______
- \circ \quad Practice: Draw Lewis structure for the following molecules

1. HF

2. N₂

 $3. \ NH_3$

4. CH₄

5. CF₄

Unit 6- Covalent Molecules Part 2 Notes

- Bond Polarity
 - _____- The ability of an atom to attract an electron in a bond 0
 - Increases _____ and to the _____
 - _____- having opposite ends
 - Nonpolar bonds- Share electrons _____

 - Polar bond- the electron is shared _______ end and a ______ negative end
 - Why would the electron not be shared equally?
 - It is a tug-of-war with the electron and the _____ electronegative element is winning
 - Polar bond: Electronegativity difference > _____ 0
 - Nonpolar bond: electronegativity difference ≤ _____
 - Practice: Determine if the bond is polar or nonpolar

1.	Carbon and Oxygen	Electronegativity	
2.	Hydrogen and Carbon	Н	2.1
3.	Hydrogen and Oxygen	С	2.5
		0	3.5

- **Bond Polarity** •
 - Molecules are considered to be polar if they have an overall

_____ (partially positive end and partially negative end)

Polar molecules have one or more ______

- A molecule can have a polar bonds and be
 - This happens when the polar bonds cancel each other out
- Water is VERY _____
- Draw the molecular polarity diagram in the space below:

- Intramolecular Forces
 - o ______ molecular forces act ______ molecules. These are the ______ that hold molecules together.
 - Fill-in the table below:

Intramolecular Force	How is it formed?	Relative Strength

Intermolecular Forces •

- molecular forces act _____ molecules.
 They determine the _____ properties of a substance such

- Dipole-Dipole •
 - o _____ occur when the _____ charged part of a molecule interacts with the charged part of a neighboring molecule
 - Often seen happening between ______ molecules.
 - Draw diagram below

Hydrogen Bonding

0		is a special type of		
		that occurs between a		atom
	bond to either an	······································	, or	
	atom.			
0	The	_ becomes partially		and the
	other element becomes partially _		_,	
0	Draw diagram below			

- London Dispersion Forces
 - Exist between _____ types of molecules (______ and _____)
 - The more _______ a molecule has, the ______ the London dispersion forces are.
 - Draw diagram below

• Intermolecular Forces Summary

Intermolecular Force	How is it formed?	Relative Strength

• Forces and Physical Properties

0	forces have	boiling points,
	melting points, and	vapor pressures
0	forces have	boiling points,
	melting points, and	vapor pressures