### Unit 4A: The Periodic Table Guided Notes

# lons

• Use the following periodic table to label the number of valance electrons and charges by families.

| 1<br>H   |          |    |           |           |           |           |           |           |           |           |           |           |            |           |            |           |            | 2<br>He    |
|----------|----------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|------------|-----------|------------|------------|
| 3<br>Li  | 4<br>Be  |    |           |           |           |           |           |           |           |           |           |           | 5<br>B     | 6<br>C    | 7<br>N     | 8<br>0    | 9<br>F     | 10<br>Ne   |
| 11<br>Na | 12<br>Mg |    |           |           |           |           |           |           |           |           |           |           | 13<br>Al   | 14<br>Si  | 15<br>P    | 16<br>S   | 17<br>Cl   | 18<br>Ar   |
| 19<br>K  | 20<br>Ca |    | 21<br>Sc  | 22<br>Ti  | 23<br>V   | 24<br>Cr  | 25<br>Mn  | 26<br>Fe  | 27<br>Co  | 28<br>Ni  | 29<br>Cu  | 30<br>Zn  | 31<br>Ga   | 32<br>Ge  | 33<br>As   | 34<br>Se  | 35<br>Br   | 36<br>Kr   |
| 37<br>Rb | 38<br>Sr |    | 39<br>Y   | 40<br>Zr  | 41<br>Nb  | 42<br>Mo  | 43<br>Tc  | 44<br>Ru  | 45<br>Rh  | 46<br>Pd  | 47<br>Ag  | 48<br>Cd  | 49<br>In   | 50<br>Sn  | 51<br>Sb   | 52<br>Te  | 53<br>I    | 54<br>Xe   |
| 55<br>Cs | 56<br>Ba | *  | 71<br>Lu  | 72<br>Hf  | 73<br>Ta  | 74<br>W   | 75<br>Re  | 76<br>Os  | 77<br>Ir  | 78<br>Pt  | 79<br>Au  | 80<br>Hg  | 81<br>Tl   | 82<br>Pb  | 83<br>Bi   | 84<br>Po  | 85<br>At   | 86<br>Rn   |
| 87<br>Fr | 88<br>Ra | *  | 103<br>Lr | 104<br>Rf | 105<br>Db | 106<br>Sg | 107<br>Bh | 108<br>Hs | 109<br>Mt | 110<br>Ds | 111<br>Rg | 112<br>Cn | 113<br>Uut | 114<br>Fl | 115<br>Uup | 116<br>Lv | 117<br>Uus | 118<br>Uuo |
|          |          | *  | 57<br>La  | 58<br>Ce  | 59<br>Pr  | 60<br>Nd  | 61<br>Pm  | 62<br>Sm  | 63<br>Eu  | 64<br>Gd  | 65<br>Tb  | 66<br>Dy  | 67<br>Ho   | 68<br>Er  | 69<br>Tm   | 70<br>Yb  |            |            |
|          |          | ** | 89<br>Ac  | 90<br>Th  | 91<br>Pa  | 92<br>U   | 93<br>Np  | 94<br>Pu  | 95<br>Am  | 96<br>Cm  | 97<br>Bk  | 98<br>Cf  | 99<br>Es   | 100<br>Fm | 101<br>Md  | 102<br>No |            |            |

| Cations                                                                                                                             | Anions                                                                               |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>Have a charge</li> <li>Formed by the of electrons</li> <li> from cations</li> <li>Silver always has a charge of</li> </ul> | <ul> <li>Have a charge</li> <li>Formed by electrons</li> <li> from anions</li> </ul> |  |  |  |
| <ul> <li>Zinc and Cadmium always have a charge of</li> <li>of</li> </ul>                                                            | form a charge                                                                        |  |  |  |

- \_\_\_\_\_are electrons in the outermost shell
- The \_\_\_\_\_\_ is a chemical rule of thumb that states that atoms of main-group elements tend to combine in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.
  - Exception: \_\_\_\_\_\_ and \_\_\_\_\_ only need a duet ( \_\_\_\_\_\_ valance electrons)
- Valance electrons are \_\_\_\_\_, \_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_\_\_, or \_\_\_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_, or \_\_\_, or \_\_\_, or \_\_\_\_, or \_\_\_\_, or \_\_\_, or \_
- \_\_\_\_\_are an atom with an overall charge consisting of one element
- \_\_\_\_\_are a group of elements with an overall charge. Polyatomic ions act as one single unit.
- Common polyatomic ions are listed on the back of your periodic table

| NI:   | m    | Δ. |
|-------|------|----|
| 1 1 0 | 2111 | с. |

Diatomic Molecules

- are 2 atoms of the same element chemically • bonded together
- List the 7 Diatomic molecules:
- How can you remember the diatomic molecules?

#### Counting Atoms

- If there is no numbers by the symbol of the element, assume only one
  - Na – MgO \_\_\_\_\_
- A \_\_\_\_\_\_ is a number written at the \_\_\_\_\_ corner of the chemical symbol. If
  - there is more than one, then a number is used. - H<sub>2</sub>

- Li<sub>2</sub>O
- A subscript \_\_\_\_\_\_a multiples all the elements inside the parenthesis.
  - $Mg_3(PO_4)_2$
- A \_\_\_\_\_\_ is a number written of a chemical symbol or in front of a chemical formula which indicates the number of atoms or molecules of the substance.

- 3 C – 2 H<sub>2</sub>O \_\_\_\_\_
- Practice:
  - 1) NaCO<sub>3</sub> 4) 3 BaCl<sub>2</sub> 7)  $Pb(NO_3)_2$ 2)  $Ca_3(PO_4)_2$ 5)  $NH_4C_2H_3O_2$ 8) 2 (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> 3) K<sub>2</sub>CrO<sub>4</sub> 6)  $4 Al_2(CO_3)_3$

Atomic Radius

Atomic Radius is defined \_\_\_\_\_\_ the distance between •

\_\_\_\_\_ of atoms bonded together (draw this)

- The radius \_\_\_\_\_\_ going across a row and \_\_\_\_\_\_ down a column.
- Where is the element with the largest atomic radius located? What element is it?
- Why are atoms larger going down a group?
- Why do atoms get smaller going to from left to right across the row?

- Practice- Atomic Radius
  - Which of the following has the largest atomic radius?
    - 1) Cobalt or Nickel
    - 2) Phosphorous or Nitrogen
    - 3) Potassium or Oxygen
  - List the following in order of *increasing* atomic radius. ٠
    - 4) Fluorine, gallium, and carbon
    - 5) Barium, iodine, and gold
  - List the following in order of *decreasing* atomic radius.
    - 6) Aluminum, Sulfur, and sodium

# **Ionic Radius**

- Radius of the atom once it becomes an ion ٠
- A \_\_\_\_\_\_ has a smaller radius than its atom
- \_\_\_\_\_has a larger radius than its atom An
- Practice- Ionic Radius
  - Which of the following has a larger radius? •
    - 1) Calcium atom or calcium ion?
    - 2) Manganese atom or manganese ion?
    - 3) Selenium atom or selenium ion?
    - 4) Chlorine atom or chlorine ion?

# Ionization Energy

٠

- Ionization Energy is the energy required to \_\_\_\_\_\_
- "3 o'clock trend"
- \_\_\_\_\_ from bottom to top \_\_\_\_\_\_ from left to right ٠

Ignore \_\_\_\_\_ (they do not become ions)

- Practice- Ionization Energy •
  - Which of the following has the largest Ionization Energy?
    - 1) Cobalt or Nickel
    - 2) Phosphorous or Nitrogen
    - 3) Potassium or Oxygen
  - List the following in order of *increasing* Ionization Energy.
    - 4) Fluorine, gallium, and carbon
    - 5) Barium, iodine, and gold
  - List the following in order of *decreasing* Ionization Energy.
    - 6) Aluminum, Sulfur, and sodium

| Name:      |                                                                                          |                                                                |                                                                         | Period:                     |
|------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|
| Electro    | negativity                                                                               | (                                                              |                                                                         |                             |
| •          | Electronegativity is a measu                                                             | ire of                                                         |                                                                         | of an atom for the          |
|            | "3 o'clock trend"<br>Ignore<br>Practice- Electronegativity<br>Which of the following has | from<br>from<br>the largest Electron                           | bottom to top<br>left to right<br>_ (they do not attract<br>legativity? | t ions)                     |
|            | <ol> <li>Cobalt or Nicke</li> <li>Phosphorous o</li> <li>Potassium or O</li> </ol>       | l<br>r Nitrogen<br>xygen                                       |                                                                         |                             |
| •          | List the following in order of 4) Fluorine, gallium                                      | f <i>increasing</i> Electro<br>n, and carbon                   | negativity.                                                             |                             |
| •          | 5) Barium, iodine,<br>List the following in order o                                      | and gold<br>f <i>decreasing</i> Electro                        | onegativity.                                                            |                             |
| rends<br>• | <br>Ionization Energy and Elect<br>The electrons of                                      | ronegativity have th                                           | neatoms are                                                             | periodic trend (3 o'clock). |
| •          | Larger atoms = valence elec<br>easier to steal                                           | iction = harder to p<br>itrons are                             | ull electrons away fro                                                  | = electrons are             |
| Netalli    | c Characteristic and Metal R                                                             | eactivity                                                      |                                                                         |                             |
| •          | Metal reactivity and Metall<br>as we move from right to le                               | <br>c characteristic<br>ft                                     |                                                                         | (                           |
| •          | Metal reactivity and Metall<br>as we move from to                                        | c Characteristic<br>op to bottom                               |                                                                         |                             |
| •          | Where is the most reactive                                                               | metal located? Wh                                              | at element is it?                                                       |                             |
| •          | Activity Series for Metals: s reactive                                                   | nows common and<br>Reactivity Series of<br>— Potassium K       | ranks the metals from<br>Metals<br>(Most reactive metal)                | m most reactive and least   |
|            | These metals are<br>more reactive                                                        | SodiumNaCalciumCaMagnesiumMgAluminiumAlZineZnIronFeTinSnLeadPb |                                                                         |                             |

Lead [Hydrogen]

- Copper Mercury

Silver

Gold

These metals are less reactive than -hydrogen

[H]

Cu Hg

Ag Au

(Least reactive metal)

• Practice- Metallic Characteristic

٠

- Which of the following has the most Metallic Characteristic?
  - 1) Cobalt or Nickel
  - 2) Phosphorous or Nitrogen
  - 3) Potassium or Oxygen
- List the following in order of *increasing* Metallic Characteristic.
  - 4) Fluorine, gallium, and carbon
  - 5) Barium, iodine, and gold
- List the following in order of *decreasing* Metallic Characteristic.
  - 6) Aluminum, Sulfur, and sodium

### Summary of Trends



| Trend                       | Period | Group |
|-----------------------------|--------|-------|
| Atomic Radius               |        |       |
|                             |        |       |
| Ionization Energy           |        |       |
|                             |        |       |
| Electronegativity           |        |       |
|                             |        |       |
| Metallic Characteristic and |        |       |
| Metal Reactivity            |        |       |