\qquad
\qquad

Unit 14 Gas Laws Guided Notes

Properties of Gases:

- Can you name some common gases?
- Highest \qquad of all states of matter
- There is a lot of \qquad in a gas
- Gases can be \qquad infinitely
- Gases \qquad containers uniformly and completely
- Gases diffuse and mix rapidly

Gas Law Variables

- Gas properties can be modeled using math. Model depends on-
- $V=$
- $\mathrm{T}=$
- ALL temperatures in the entire chapter MUST be in \qquad !!! No Exceptions!
- $\mathrm{n}=$
- $P=$
- $\mathrm{R}=$

Kinetic Molecular Theory

- Kinetic Molecular Theory= a theory that describes the \qquad of gas particles (\qquad parts to the theory)

1. Gases consist of tiny \qquad (atoms or molecules)
2. These particles are so small, compared with the distances between them, that the volume (size) of the individual particles can be assumed to be \qquad
3. These particles are in \qquad ______ \qquad colliding with the walls of the container. These collisions with the walls cause the \qquad exerted by the gas.
4. The particles are assumed to not \qquad or \qquad each other.
5. The average kinetic energy of the gas particles is directly proportional to the \qquad of the gas.

Diffusion and Effusion

- \qquad is the gradual mixing of molecules of different gases.
- Think about a person wearing perfume walking into a room
- \qquad is the movement of molecules through a small hole.
- Think about a tire with a small hole. What happens to the air in the tire?

STP

- STP stands for
- Gases behavior change when temperature and pressure are changed
- For this reason we have a standard temperature and pressure
- STP allows us to \qquad gases
- Standard Temperature= \qquad K
- Standard Pressure= \qquad atmosphere
- At STP 1 mole of gas occupies \qquad of space

Temperature
\bullet \qquad is a measure of average kinetic energy

- Temperature can be measured in $\circ \mathrm{F},{ }^{\circ} \mathrm{C}$, or K
- Every problem this unit needs to be in units of \qquad
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273$
- Matter cannot be cooled to temperature lower than -273 ${ }^{\circ} \mathrm{C}$, therefore this temperature is called

○ $-273{ }^{\circ} \mathrm{C}=0 \mathrm{~K}$

- Temperature at STP is \qquad
Pressure
- Pressure= how \qquad and how \qquad molecules collide with the container they are in
- Pressure of air is measured with a \qquad
- Mercury (Hg) rises in tube until force of Hg (down) balances the force of atmosphere (pushing up). (Just like a straw in a drink)
- Column height measures Pressure of atmosphere
- Units of pressure @ STP:
- = 1 standard atmosphere (atm) *we use atm
- $=760 \mathrm{~mm} \mathrm{Hg}$
- $=760$ torr
- = 29.92 inches Hg
$0=14.7$ pounds/in2 (psi)
$0=101.3 \mathrm{kPa}$
o = about 34 feet of water!
- Recognize these different units of pressure
- We will use these values as conversion factors
A. What is 475 mm Hg expressed in atm?
B. The pressure of a tire is measured as 29.4 psi . What is this pressure in mm Hg ?
C. What is 2 atm expressed in torr?
D. The pressure of a tire is measured as 32.0 psi. What is this pressure in kPa ?

Gases in the Air

Dalton's Law of Partial Pressure

- The total pressure in the air is equal to the sum of all of the partial pressures caused by each gas in air
- $\mathrm{P}_{\mathrm{Air}}=\mathrm{P}_{\mathrm{N} 2}+\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{Ar}}+\mathrm{P}_{\mathrm{CO} 2}$
- $P_{\text {Air }}=$

The \% of Gases in Air	Partial Pressure at STP
$78.08 \% \quad \mathrm{~N}_{2}$	593.4 mm Hg
$20.95 \% \mathrm{O}_{2}$	159.2 mm Hg
$0.94 \% \mathrm{Ar}$	7.1 mm Hg
$0.03 \% \quad \mathrm{CO}_{2}$	0.2 mm Hg

- Dalton's Law of Partial Pressures: The \qquad pressure in a container is equal to the \qquad of the partial pressures of each gas within the container
- $\quad P_{\text {total }}=$
\bullet
- Example 1: What is the total pressure in a flask containing the following:

$$
\begin{array}{rl}
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})=-> & \underset{2}{2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})} \quad+\mathrm{O}_{2}(\mathrm{~g}) \\
0.32 \mathrm{~atm} & 0.16 \mathrm{~atm}
\end{array}
$$

- Example 2: Oxygen and chlorine gas are mixed in a container with partial pressures of 401 mmHg and 0.639 atm , respectively. What is the total pressure inside the container (in atm)?
- Example 3: Container A contains a gas under 3.24 atm of pressure. Container B contains a gas under 2.82 atm of pressure. Container C contains a gas under 1.21 atm of pressure. If all of these gases are put into Container D, what is the pressure in Container D ?

Boyle's Law

- $P \alpha$ \qquad
- This means Pressure and Volume are

PROPORTIONAL
if moles and temperature are constant (do not change).
For example, P goes up as V goes down. WHY?

- Formula:

- $P_{1} V_{1}=$ \qquad pressure and volume
- $\mathrm{P}_{2} \mathrm{~V}_{2}=$ \qquad pressure and volume
and \qquad are held constant

1) A sample of oxygen gas occupies a volume of 250 mL at 740 torr pressure. What volume will it occupy at 810 torr?

Charles’s Law

- $\quad \mathrm{V} \alpha$ \qquad
- V and T are \qquad proportional. They increase together and they decrease together. WHY?
- Formula:

- \qquad and \qquad are constant

2) A sample of nitrogen gas occupies a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $95^{\circ} \mathrm{C}$?

Gay-Lussac's Law

- $P \alpha$ \qquad

- P and T are directly proportional. They increase together and they decrease together. WHY?
- Formula
- __ and \qquad are constant

3) A sample of gas has at a pressure of 75 kPa and $0^{\circ} \mathrm{C}$. The pressure is increased to 125 kPa , what is the new temperature?

Combined Gas Law

- All of the gas laws can be can be combined into one gas law called the \qquad Gas Law
- Formula:
- \qquad is held constant

4) A gas occupies 3.0 L of space at 1.5 atm and $20^{\circ} \mathrm{C}$, if the pressure is increased to 2.5 atm and the temperature rises to $30^{\circ} \mathrm{C}$, how much space will the gas occupy?

Avogadro’s Hypothesis

- Equal volume of gases at the same T and P have the same number of molecules
- $V \alpha$ \qquad
- Formula:
- $\quad V$ and n are directly proportional. They increase together and they decrease together. WHY?
- \qquad are constant

5) Suppose we have a 12.2 L sample containing 0.50 moles of oxygen gas, O_{2}. If all of this O_{2} is converted to ozone, O_{3} what is the new volume of the gas? $3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$

Ideal Gas Law

- An ideal gas is a \qquad gas that exactly obeys the ideal gas law

\bullet

- Ideal Gas Law:
- R is the \qquad
- $\mathrm{R}=$

6) How much space does 1 mole of oxygen gas occupy at STP? (SHOW WORK)

Summary Of Gas Laws

Name	Boyle's Law	Charles's Law	Gay-Lussac's Law	Avogadro's Law	Combined Gas Law
Law/ Equation					
Relationship between variables (direct or inverse)				X	
Variables held constant					

Ideal Gas Law=

R=
Dalton's Law of Partial Pressure=

