:	Period:
	Equilibrium and Rates- Guided Notes Part 1
is a C	Chemical Reaction and how do they occur?
Αc	chemical reaction is a process that involves of atoms
	w of Conservation of: Mass is neither created or destroyed
Ва	lance and model the following reaction: $\underline{\hspace{1cm}} H_2 + \underline{\hspace{1cm}} O_2 \leftarrow \overline{\hspace{1cm}} \underline{\hspace{1cm}} H_2 O$
Ex	plain how the atoms are rearranged
\ \ /\	hy are there double arrows in the reaction?
VVI	ify are there double arrows in the reaction:
riun	<u>1</u>
orium •	
orium •	reaction: reaction involving reactants and products in the same state
orium • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states
• • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states the exact balance of two processes, one of which is the opposite of the o
• • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction the same as the rate of the reverse reaction
• • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain
• • • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction the same as the rate of the reverse reaction
• • • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reacti the same as the rate of the reverse reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reacti the same as the rate of the reverse reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ Equilibrium will occur when
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reacti the same as the rate of the reverse reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ □ Equilibrium will occur when □ of the forward rxn= of reverse rxn
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reacti the same as the rate of the reverse reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ Equilibrium will occur when of the forward rxn= of reverse rxn When concentration of all reactants and products remain
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ Equilibrium will occur when of the forward rxn= of reverse rxn When concentration of all reactants and products remain Does NOT mean concentration of reactants and products are
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products ### Of the forward rxn= of reverse rxn ### When concentration of all reactants and products remain of reverse rxn #### Does NOT mean concentration of reactants and products are to products are
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ Equilibrium will occur when of the forward rxn= of reverse rxn When concentration of all reactants and products remain Does NOT mean concentration of reactants and products are
•	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ Equilibrium will occur when of the forward rxn= of reverse rxn When concentration of all reactants and products remain of reverse rxn loes NOT mean concentration of reactants and products are to products are products constantly to reactants)
• • • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reacti the same as the rate of the reverse reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ ○ Equilibrium will occur when ■ of the forward rxn= of reverse rxn ■ When concentration of all reactants and products remain ■ Does NOT mean concentration of reactants and products are to products are ■ It is a dynamic state (reactants constantly to reactants)
• • • • • • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H ₂ O + CO ←→ H ₂ + CO ₂ • Equilibrium will occur when • of the forward rxn= of reverse rxn • When concentration of all reactants and products remain of reverse rxn • Does NOT mean concentration of reactants and products are to products are products constantly to reactants) • Expression actions are given the following general format: aA + bB ←→ cC + dD
• • • • • • • • • • • • • • • • • • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H₂O + CO ←→ H₂ + CO₂ • Equilibrium will occur when • of the forward rxn= of reverse rxn • When concentration of all reactants and products remain • Does NOT mean concentration of reactants and products are to products are • It is a dynamic state (reactants constantly to reactants) n Expression actions are given the following general format: aA + bB ←→ cC + dD here A, B, C, D are chemical
• • • • • • • • • • • • • • • • • • •	reaction: reaction involving reactants and products in the same state reaction: reaction involving reactants and products in different states : the exact balance of two processes, one of which is the opposite of the o : is when the rate of the forward reaction At equilibrium concentrations of all reactants and products remain Chemical Equilibrium is equilibrium (constantly changing) Does NOT mean same of reactants and products H ₂ O + CO ←→ H ₂ + CO ₂ • Equilibrium will occur when • of the forward rxn= of reverse rxn • When concentration of all reactants and products remain of reverse rxn • Does NOT mean concentration of reactants and products are to products are products constantly to reactants) • Expression actions are given the following general format: aA + bB ←→ cC + dD

Remember [] indicate _____

is a constant called the equilibrium constant

Used to ______ the equilibrium of a reaction

	Solids a	and Liquids are included in the equilibrium expression	
	0	The concentration of solids and liquids cannot change, so we ignore them	
•	Practic	e: Write the equilibrium expression for the following reactions:	
	1)	NH_4NO_3 (aq) + \longleftrightarrow N_2O (g) + $2H_2O$ (g)	
	2)	$2KCIO_3$ (s) \longleftrightarrow $2KCI$ (s) + $3O_2$ (g)	
	3)	$CO_2(g) + MgO(s) \leftarrow \rightarrow MgCO_3(s)$	
	4)	Suppose that for the reaction below it is determined that the equilibrium co	oncentrations are [N ₂] =
	٠,	0.000104 M, $[Cl_2] = 0.000201$ M, and $[NCl_3] = 0.141$ M. Write the equilibrium	
		equilibrium constant. $N_2(g) + 3Cl_2(g) \leftrightarrow 2NCl_3(g)$	
г			
L			
Canditi	ions that	Affect Deartion Dates	
Conditi	ions mai	Affect Reaction Rates	
1)	Nature	of Reactants- Substances vary greatly in their tendency to react depending of	on their
2)		strengths and structure. Only effect, bu	
	Catalys	strengths and structure. Only effect, but not, but not,	t not
			t not
3)	effect t	sts and Inhibitors- Only effect, but not	t not because they
3)	effect t	ts and Inhibitors- Only effect, but not, but not the rate of both the forward and reverse reaction	t not because they
	effect t	ts and Inhibitors- Only effect, but not, but not	t not because they . This
4)	Pressur Concer	ts and Inhibitors- Only effect, but not, the rate of reaction.	t not because they This the rate of reaction.
4)	Pressur Concer Tempe	the rate of pressure means increases the rate of reaction. the rate of reaction the rate of reaction. htration- More molecules means more collisions. This	t not because they This the rate of reaction.
4) 5)	Pressur Concer Tempe	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. Intration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction.	t not because they This the rate of reaction.
4) 5) Le Cha	Concer Tempe rate of	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. Intration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction.	t not because they This the rate of reaction. the
4) 5) Le Cha	Concer Tempe rate of telier's P	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. retration- More molecules means more collisions. This reaction. retration- Higher temp means higher speeds which means more collisions. This reaction. retration- More molecules means higher speeds which means more collisions. This reaction.	t not because they This the rate of reaction. the
4) 5) Le Cha	Concer Tempe rate of telier's P	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. htration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. rinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new	t not because they This the rate of reaction. the
4) 5) Le Cha	Concer Tempe rate of telier's P	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. htration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. rinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new	t not because they This the rate of reaction. the
4) 5) Le Cha	Concer Tempe rate of telier's P	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. ntration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. rinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new s is a change in,, along wit	t not because they This the rate of reaction. the
4) 5) Le Cha	Concer Tempe rate of LeChat system A stres.	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. retration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. rinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new s is a change in,, along wit NOT effect equilibrium	t not because they This the rate of reaction. the h catalysts and inhibitors do
4) 5) Le Cha	Concer Tempe rate of telier's P LeChat system A stress	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. Intration- More molecules means more collisions. This reaction. Intration- Higher temp means higher speeds which means more collisions. This reaction. Intration- More molecules means more collisions. This reaction. Intration- Higher temp means higher speeds which means more collisions. This reaction. Intration- More molecules means more collisions. This reaction means more collisi	t not because they This the rate of reaction. the h catalysts and inhibitors do
4) 5) Le Cha	Concer Tempe rate of telier's P LeChat system A stres.	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. Intration- More molecules means more collisions. This reaction. Intration- Higher temp means higher speeds which means more collisions. This reaction. Intration- Wrinciple Relier's Principle (also called	t not because they This the rate of reaction. the h catalysts and inhibitors do
4) 5) Le Cha	Concer Tempe rate of telier's P LeChat system A stres These s equilib The shi	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. Intration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. Intrinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new s is a change in, along wit NOT effect equilibrium extressors will cause the forward or the reverse reaction rium ft will be	t not because they This the rate of reaction. the heartist applied to a or ch catalysts and inhibitors do to change, shifting
4) 5) Le Cha	Concer Tempe rate of telier's P LeChat system A stres These s equilib The shi	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. retration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. rinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new s is a change in, along wit NOT effect equilibrium stressors will cause the forward or the reverse reaction rium ft will be towards are favored/ to the	t not because they This the rate of reaction. the heartist applied to a or ch catalysts and inhibitors do to change, shifting
4) 5) Le Cha	Concer Tempe rate of telier's P LeChat system A stres. These s equilib The shi	the rate of both the forward and reverse reaction re- Increase in pressure means increases the rate of reaction. Intration- More molecules means more collisions. This rature- Higher temp means higher speeds which means more collisions. This reaction. Intrinciple elier's Principle (also called the system will shift in an effort to offset that stress and establish a new s is a change in, along wit NOT effect equilibrium extressors will cause the forward or the reverse reaction rium ft will be	t not because they This the rate of reaction. the heart of reaction. the

•	Change	e in Conc	entration			
	0	If conce	entration is increased, t	the equilibrium will s	hift	from the increase
		•	If more of a substance	e is		_, the system will shift in a way that will
			use up the substance	added		
	0	If conce	entration is decreased,	the equilibrium will s	shift	the decrease
		•	If substance is		, the syste	em will shift in a way that will produce
			more of that substance	ce		
	0	Practice	e: $N_{2 (g)} + 3 H_{2 (g)} \longleftrightarrow 2 N$	IH _{3 (g)}		
		1)	What happens if I incr	ease concentration of	of N ₂ ?	
		2)	What happens if I dec	rease concentration	of H ₂ ?	
•	Change		perature			
	0	First yo	u have to determine if	reaction is endother	mic or exot	hermic.
	0					treated as a
	0					s treated as a
	0		f heat as a reactant or	•).	
	0	-	le: $N_{2(g)} + 3 H_{2(g)} \longleftrightarrow 2 N$			
		•	Is this reaction endot		ic?	
		2)	What happens if read	ction is heated?		
•	Change	e in Press	sure			
	0		ge in pressure will only	effect a reaction wit	h	
	0	If the p	ressure is	tl	ne reaction	will shift to the side with
			moles o	of gas		
	0		are use		moles	
		•		pressure allows n	nore space	for gas
	0	If the p	ressure is	the	e reaction w	vill shift to the side with
			mol	les of gas		
		•			ess space fo	or gas
	0	Exampl	le: $N_{2 (g)} + 3 H_{2 (g)} \leftrightarrow 2 N$	NH _{3 (g)}		
		1) What happens if I in	crease the pressure?	?	

2) What happens if I decrease the pressure?

3

•	ractice:	
	Which way would the reaction shift if the more pure liquid is added to the reactants?	
	Which way would the reaction shift if a catalyst was added to the reactants?	
	Using the reaction below determine which way the reaction will shift with the following stressors:	
	$2H_{2(g)} + O_{2(g)} \leftarrow \rightarrow 2H_2O_{(g)} + 95kJ$	

2H _{2(g)}	+ $O_{2(g)} \leftarrow \rightarrow 2H_2O_{(g)} + 95kJ$
a.	Add O ₂
b.	Remove H ₂
c.	Decrease Pressure
d.	Increase temperature

4) Using the reaction below determine which way the reaction will shift with the following stressors: (remember pure solids and liquids do NOT effect equilibrium): $87.6cal + 2KClO_{3(s)} \leftarrow \Rightarrow 2KCl_{(aq)} + 3O_{2(g)}$

a.	Add KCIO ₃
b.	Remove O ₂
c.	Increase pressure
d.	Increase temperature

5) Using the reaction below determine at least 3 ways you could stress the reaction above to cause an increase in the concentration of oxygen gas. 87.6cal + $2KClO_{3(s)} \leftarrow \rightarrow 2KCl_{(aq)} + 3O_{2(g)}$

a.	
b.	
с.	

Equilibrium and Rates- Guided Notes Part 2

How Chemical Reactions Occur

now Chemical Reactions Occur		
Collision Theory: molecules must	with enough	
and in the proper		
 Do all reactions require energy to occur? 		
• Energy- The	e minimum energy required in for a c	hemical reaction to occur
What do we call a reaction that absorbs energy	?	
 What do we call a reaction that releases energy 	?	
Energy in Reactions		
Once the reactants have gained enough energy	(the	energy), they are
considered to be the		
 In other words the activated complex is 	the reactants with a lot of	
 After the activated complex state, the reactants 	S	to form the products
•:1	The change in energy in a reaction	
Represented by		
•	reactions have a + Δ H	
•	reactions have a -ΔH	
Reaction Coordinate Diagrams		
i .	ř.	
Reaction progress (a)	Reaction progress —	AND
Catalyst and Inhibitors	1-7	
•:a:	substance that speeds up a reaction v	without heing consumed
(part of the reaction)	substance that speeds up a reaction t	without being consumed
How do catalysts work?		
They lower the	energy (Now le	ess energy is required for the
reaction to take place)		
 They increase the rate of the 	AND the	reaction
An example of a catalyst is an		
 Enzyme: a large molecule, usually a pro : a su 	tein, which catalyzes biological reacti	
(abstance that slows down a reaction	without being consumed
Decreases the rate of the	AND	reaction

O Draw a Reaction Diagram with and without a catalyst:

Reaction Process

Enthalpy

- The amount of energy transferred between the ______ (the reaction) and the
- ΔH = Hproducts Hreactants
- ΔH = + (_____)
 - o More heat goes from ______ into system
- ΔH = (______)
 - More heat leaves _____ and goes into surroundings
- Energy is not created or destroyed just transferred between system and surroundings (Law of Conservation of

Hess's Law

- _____states that the enthalpy of a whole reaction is equivalent to the sum of its steps.
- All reactions have a ______
-
- ΔH is usually measured in units of _______
- The change in enthalpy is caused by ______ breaking and forming
- For example:
 - $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ $\Delta H = -967.2 \text{ kJ}$
- What about the reverse reaction?
 - $\bigcirc \quad 2H_2O(I) \rightarrow 2H_2(g) + O_2(g) \qquad \Delta H = \underline{\hspace{1cm}} kJ$

•	what if we tripled the amount of water?
	○ 3 $[2H_2O(I) \rightarrow 2H_2(g) + O_2(g)]$ $\Delta H = 3$ (kJ)
	○ $6H_2O(I) \rightarrow 6H_2(g) + 3O_2(g)$ $\Delta H =kJ$
•	Hess's Law allows us to add chemical equations to determine potential ΔH of reactions
	\circ We can reactants, products, and ΔH
	 We can simplify, multiply by coefficients, and reverse a reaction
•	If a reaction is reversed, ΔH is also reversed
	○ 2 CH ₄ + O ₂ \rightarrow 2 CH ₃ OH Δ H _{rxn} = -328 kJ
	\circ 2 CH ₃ OH \rightarrow 2 CH ₄ + O ₂ Δ H _{rxn} = kJ
•	If the coefficients of a reaction are multiplied by an integer, ΔH is multiplied by that same integer
	○ $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2 O$ $\Delta H_{rxn} = -802.5 \text{ kJ}$
	○ $2(CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O) \Delta H_{rxn} = 2(\phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
	○ $2CH_4 + 4O_2 \rightarrow 2CO_2 + 4H_2O\Delta H_{rxn} =kJ$
•	Tips for applying Hess's Law:
	 Look at the final equation that you are trying to create first
	 Find a molecule from that equation that is only in <u>one</u> of the given equations
	o Look at each reaction and determine if the products and reactants are on the correct side of the
	equation- if not reverse the reaction
	 Look to see if each reaction will provide the correct number of reactants and products- if not
	multiply
	 Next, alter remaining equations to get things to cancel that do not appear in the final equation
•	Hess's Law Example #1: When methane is burned in oxygen, carbon dioxide and water are produced.
	$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$
•	Calculate the change in enthalpy when methane is burned using the following:
	1) C + $2H_2 \rightarrow CH_4 \Delta H = -74.80 \text{ kJ}$
	2) C + O ₂ \rightarrow CO ₂ Δ H= -393.50 kJ
	3) H ₂ + ½ O ₂ → H ₂ O ΔH= -285.83 kJ
•	Hess's Law Example #2: Methanol-powered cars are an idea for alternative fuel What is the change in
	enthalpy of the reaction for methanol burning in a car? 2 CH ₃ OH _(I) + 3 O _{2(g)} \rightarrow 2 CO _{2(g)} + 4 H ₂ O _(g) Δ H _{rxn} = ?
	• Given the following information:
	1) $2 \text{ CH}_{4(g)} + O_{2(g)} \rightarrow 2 \text{ CH}_3 OH_{(I)} \Delta H_{rxn} = -328 \text{ kJ}$
	2) $CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$ $\Delta H_{rxn} = -802.5 \text{ kJ}$

•	Another way	to /	calculate	Hess's	Law
---	-------------	------	-----------	--------	-----

$$_{\circ}$$
 ΔH = ΣΔH_{f (products)} - ΣΔH_{f (reactants)}

- O What does this mean?
- \circ $\Delta H =$ (the sum of the enthalpy of formation of the products) (the sum of the enthalpy of formation of the reactants)
- o Be careful adding and subtracting negative numbers
- Hess's Law Example #3: When methane is burned in oxygen, carbon dioxide and water are produced.
 CH₄ + 2 O₂ → CO₂ + 2 H₂O
- Calculate the ΔH when methane is burned using the following:

Substance	$\Delta H_{\rm f}$
CH ₄	-74.80 kJ
O ₂	0 kJ
CO ₂	-393.50 kJ
H ₂ O	-285.83 kJ

Hess's Law Example #4: Use the standard enthalpies of formation table to determine the change in enthalpy

for the following: NaOH + HCl \rightarrow NaCl + H₂O

101	the following.	Naoniine) Naci i i	120	

Substance	ΔH_{f}	
NaOH	-426.70 kJ	
HCI	-92.30 kJ	
NaCl	-411.00 kJ	
H ₂ O	-285.83 kJ	