\qquad

Equilibrium and Rates- Guided Notes Part 1

What is a Chemical Reaction and how do they occur?

- A chemical reaction is a process that involves \qquad of atoms
- Law of Conservation of \qquad : Mass is neither created or destroyed
- Balance and model the following reaction: \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{O}_{2} \leftarrow \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$
\square
- Explain how the atoms are rearranged
- Why are there double arrows in the reaction?

Equilibrium

\qquad reaction: reaction involving reactants and products in the same state
\qquad reaction: reaction involving reactants and products in different states

- ___ the exact balance of two processes, one of which is the opposite of the other
-

the same as the rate of the reverse reaction

- At equilibrium concentrations of all reactants and products remain \qquad
- Chemical Equilibrium is \qquad equilibrium (constantly changing)
- Does NOT mean same \qquad of reactants and products
- $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \leftrightarrow \mathrm{H}_{2}+\mathrm{CO}_{2}$ - Equilibrium will occur when...
- \qquad of the forward $\mathrm{rxn}=$ \qquad of reverse rxn
- When concentration of all reactants and products remain
- Does NOT mean concentration of reactants and products are \qquad
- It is a dynamic state (reactants constantly \qquad to products and products constantly \qquad to reactants)

Equilibrium Expression

- Reactions are given the following general format: $\mathrm{aA}+\mathrm{bB} \leftrightarrow \rightarrow \mathrm{cC}+\mathrm{dD}$
- Where A, B, C, D are chemical \qquad
- a, b, c, dare \qquad
- Equilibrium expression: $\mathrm{K}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}} \quad$ (Products over reactants)
- Remember [] indicate \qquad in M
is a constant called the equilibrium constant
- Used to \qquad the equilibrium of a reaction
- Solids and Liquids are \qquad included in the equilibrium expression
- The concentration of solids and liquids cannot change, so we ignore them
- Practice: Write the equilibrium expression for the following reactions:

1) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\leftarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2) $2 \mathrm{KClO}_{3}(\mathrm{~s}) \longleftrightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
3) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{MgO}$ (s) $\longleftrightarrow \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s})$
4) Suppose that for the reaction below it is determined that the equilibrium concentrations are $\left[\mathrm{N}_{2}\right]=$ $0.000104 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=0.000201 \mathrm{M}$, and $\left[\mathrm{NCl}_{3}\right]=0.141 \mathrm{M}$. Write the equilibrium expression and solve for the equilibrium constant. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NCl}_{3}(\mathrm{~g})$
\square

Conditions that Affect Reaction Rates

1) Nature of Reactants- Substances vary greatly in their tendency to react depending on their
\qquad strengths and structure. Only effect \qquad , but not \qquad
2) Catalysts and Inhibitors- Only effect \qquad , but not \qquad because they effect the rate of both the forward and reverse reaction
3) Pressure- Increase in pressure means increases \qquad . This
\qquad the rate of reaction.
4) Concentration- More molecules means more collisions. This \qquad the rate of reaction.
5) Temperature- Higher temp means higher speeds which means more collisions. This \qquad the rate of reaction.

Le Chatelier's Principle

- LeChatelier's Principle (also called \qquad)- when stress is applied to a system the system will shift in an effort to offset that stress and establish a new \qquad
- A stress is a change in \qquad , \qquad or \qquad
- Pure \qquad and \qquad along with catalysts and inhibitors do NOT effect equilibrium
- These stressors will cause the forward or the reverse reaction \qquad to change, shifting equilibrium
- The shift will be
- towards \qquad $/$ \qquad are favored/ to the \qquad OR
- towards \qquad are favored/ to the \qquad
- Change in Concentration
- If concentration is increased, the equilibrium will shift \qquad from the increase
- If more of a substance is \qquad the system will shift in a way that will use up the substance added
- If concentration is decreased, the equilibrium will shift \qquad the decrease
- If substance is \qquad , the system will shift in a way that will produce more of that substance
- Practice: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

1) What happens if I increase concentration of N_{2} ?
2) What happens if I decrease concentration of H_{2} ?

- Change in Temperature
- First you have to determine if reaction is endothermic or exothermic.
- Exothermic reaction-heat is \qquad ; heat is treated as a \qquad
- Endothermic reaction- heat is \qquad ; heat is treated as a \qquad
- Think of heat as a reactant or product (but it's not).
- Example: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+92 \mathrm{KJ}$

1) Is this reaction endothermic or exothermic?
2) What happens if reaction is heated?

- Change in Pressure
- A change in pressure will only effect a reaction with \qquad
- If the pressure is \qquad the reaction will shift to the side with
\qquad moles of gas
○ \qquad are used to determine \# of moles
- \qquad pressure allows more space for gas
- If the pressure is \qquad the reaction will shift to the side with moles of gas
- \qquad pressure, allows less space for gas
- Example: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

1) What happens if I increase the pressure?
2) What happens if I decrease the pressure?

- Practice:

1) Which way would the reaction shift if the more pure liquid is added to the reactants? \qquad
2) Which way would the reaction shift if a catalyst was added to the reactants?
3) Using the reaction below determine which way the reaction will shift with the following stressors:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+95 \mathrm{~kJ}$
a. Add O_{2} \qquad
b. Remove H_{2} \qquad
c. Decrease Pressure \qquad
d. Increase temperature \qquad
4) Using the reaction below determine which way the reaction will shift with the following stressors: (remember pure solids and liquids do NOT effect equilibrium): $87.6 \mathrm{cal}+2 \mathrm{KClO}_{3(\mathrm{~s})} \leftarrow \rightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+3 \mathrm{O}_{2(\mathrm{~g})}$
a. Add KClO_{3} \qquad
b. Remove O_{2} \qquad
c. Increase pressure
d. Increase temperature
5) Using the reaction below determine at least 3 ways you could stress the reaction above to cause an increase in the concentration of oxygen gas. $87.6 \mathrm{cal}+2 \mathrm{KClO}_{3(\mathrm{~s})} \leftarrow \rightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+3 \mathrm{O}_{2(\mathrm{~g})}$
a.
b.
c.

How Chemical Reactions Occur

- Collision Theory: molecules must \qquad with enough \qquad
and in the proper \qquad in order to react
- Do all reactions require energy to occur?
- \qquad Energy- The minimum energy required in for a chemical reaction to occur
- What do we call a reaction that absorbs energy? \qquad
- What do we call a reaction that releases energy? \qquad

Energy in Reactions

- Once the reactants have gained enough energy (the \qquad energy), they are considered to be the \qquad .
- In other words the activated complex is the reactants with a lot of \qquad
- After the activated complex state, the reactants \qquad to form the products
-

: The change in energy in a reaction

- Represented by \qquad
- \qquad reactions have a $+\Delta \mathrm{H}$
-
- \qquad reactions have a $-\Delta \mathrm{H}$

Reaction Coordinate Diagrams

Catalyst and Inhibitors

- \qquad : a substance that speeds up a reaction without being consumed
\qquad part of the reaction)
- How do catalysts work?
- They lower the \qquad energy (Now less energy is required for the reaction to take place)
- They increase the rate of the \qquad AND the \qquad reaction
- An example of a catalyst is an \qquad
- Enzyme: a large molecule, usually a protein, which catalyzes biological reactions (reactions in your body)
- \qquad : a substance that slows down a reaction without being consumed
\qquad part of the reaction)
- Decreases the rate of the \qquad AND \qquad reaction
- Draw a Reaction Diagram with and without a catalyst:

Enthalpy

- The amount of energy transferred between the \qquad (the reaction) and the \qquad
- $\Delta \mathrm{H}=$ Hproducts - Hreactants
- $\Delta \mathrm{H}=+$ (

- More heat goes from \qquad into system
- $\Delta \mathrm{H}=-$ (
___)
- More heat leaves \qquad and goes into surroundings
- Energy is not created or destroyed just transferred between system and surroundings (Law of Conservation of

Hess's Law

- \qquad states that the enthalpy of a whole reaction is equivalent to the sum of its steps.
- All reactions have a \qquad
- Most substances have a known \qquad
- $\Delta \mathrm{H}$ is usually measured in units of \qquad
- The change in enthalpy is caused by \qquad breaking and forming
- For example:

$$
\text { - } 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=-967.2 \mathrm{~kJ}
$$

- What about the reverse reaction?
- $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=$ \qquad kJ
- What if we tripled the amount of water?
- $3\left[2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\right] \quad \Delta \mathrm{H}=3($ \qquad kJ)
- $6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 6 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=$ \qquad kJ
- Hess's Law allows us to add chemical equations to determine potential $\Delta \mathrm{H}$ of reactions
- We can \qquad reactants, products, and $\Delta \mathrm{H}$
- We can simplify, multiply by coefficients, and reverse a reaction
- If a reaction is reversed, $\Delta \mathrm{H}$ is also reversed
- $2 \mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}$
$\Delta H_{r x n}=-328 \mathrm{~kJ}$
- $2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow 2 \mathrm{CH}_{4}+\mathrm{O}_{2}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=$ \qquad kJ
- If the coefficients of a reaction are multiplied by an integer, $\Delta \mathrm{H}$ is multiplied by that same integer
- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-802.5 \mathrm{~kJ}$
- $2\left(\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right) \Delta \mathrm{H}_{\mathrm{rxn}}=2($ \qquad) kJ
- $2 \mathrm{CH}_{4}+4 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{\mathrm{rxn}}=$ \qquad kJ
- Tips for applying Hess's Law:
- Look at the final equation that you are trying to create first
- Find a molecule from that equation that is only in one of the given equations
- Look at each reaction and determine if the products and reactants are on the correct side of the equation- if not reverse the reaction
- Look to see if each reaction will provide the correct number of reactants and products- if not multiply
- Next, alter remaining equations to get things to cancel that do not appear in the final equation
- Hess's Law Example \#1: When methane is burned in oxygen, carbon dioxide and water are produced.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- Calculate the change in enthalpy when methane is burned using the following:

1) $\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} \quad \Delta \mathrm{H}=-74.80 \mathrm{~kJ}$
2) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.50 \mathrm{~kJ}$
3) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-285.83 \mathrm{~kJ}$

- Hess's Law Example \#2: Methanol-powered cars are an idea for alternative fuel What is the change in enthalpy of the reaction for methanol burning in a car? $2 \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=$?
- Given the following information:

1) $2 \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{l})} \Delta \mathrm{H}_{\mathrm{rxn}}=-328 \mathrm{~kJ}$
2) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-802.5 \mathrm{~kJ}$

- Another way to calculate Hess's Law:
- $\Delta H=\Sigma \Delta H_{f}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ (reactants)
- What does this mean?
- $\Delta H=$ (the sum of the enthalpy of formation of the products) - (the sum of the enthalpy of formation of the reactants)
- Be careful adding and subtracting negative numbers
- Hess's Law Example \#3: When methane is burned in oxygen, carbon dioxide and water are produced.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- Calculate the $\Delta \mathrm{H}$ when methane is burned using the following:
\square

Substance	$\boldsymbol{\Delta} \mathbf{H}_{\mathrm{f}}$
CH_{4}	-74.80 kJ
O_{2}	0 kJ
CO_{2}	-393.50 kJ
$\mathrm{H}_{2} \mathrm{O}$	-285.83 kJ

- Hess's Law Example \#4: Use the standard enthalpies of formation table to determine the change in enthalpy for the following: $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Substance	$\boldsymbol{\Delta} \mathbf{H}_{\mathrm{f}}$
NaOH	-426.70 kJ
HCl	-92.30 kJ
NaCl	-411.00 kJ
$\mathrm{H}_{2} \mathrm{O}$	-285.83 kJ

