\qquad

Unit 12 Acids and Bases- Guided Notes

Properties of Acids and Bases	
Acids	Bases
- pH of \qquad - Taste \qquad - Turn litmus paper \qquad - Neutralizes a \qquad to produce \qquad and \qquad - Proton \qquad - High concentration of \qquad ions - Electrolyte (Conducts electricity in \qquad - Reacts with some \qquad to produce \qquad	- pH of \qquad - Taste \qquad - Turn litmus paper \qquad OR \qquad - Neutralizes a \qquad to produce \qquad and \qquad - Proton \qquad - High concentration of \qquad ions - Electrolyte (Conducts electricity in \qquad - Feels \qquad
- Examples:	- Examples:

- Examples:
- Monoprotic acid-
- Monobasic-
- Diprotic acid-
- Dibasic-
- Triprotic acid-
- Strong vs. Weak Facts:
- Strong=
- Weak=
- A strong acid/base does NOT become a weak acid just because it is diluted.
- In other words, concentrated HCl and diluted HCl are both \qquad because both \qquad in water.
- Strong acids/bases of the same molarity will react at \qquad with the same metal
- Strong acids/bases conduct electricity \qquad ; whereas weak acids/bases conduct electricity \qquad

Strong Acids	Weak Acids
\qquad ionized \qquad of the acid separates into \qquad in water - Usually has a pH from \qquad - 7 Strong Acids=	\qquad ionized \qquad of the acid separates into \qquad in water and some of the acid stays as molecules - Usually has a pH from \qquad - Examples:
Strong Base	Weak Base
\qquad ionized \qquad of the acid separates into \qquad in water - Usually has a pH from \qquad - 8 Strong Bases=	\qquad ionized \qquad of the base separates into \qquad in water and some of the base stays as molecules - Usually has a pH from \qquad - Examples:

\qquad

- Acid/Base Theories
- Arrhenius
- Acids produce \qquad in $\mathrm{H}_{2} \mathrm{O}$ whereas a base produces
\qquad in $\mathrm{H}_{2} \mathrm{O}$.
- ___ produce neither H^{+}nor OH^{-}ions in water
- Good for describing \qquad acids and \qquad bases
- Bronsted-Lowry
- $\mathrm{H}+$ is a \qquad
- ___ is a proton donor $(\mathrm{H}+)$ where as a \qquad is a proton acceptor
- When an acid or a base reacts with water, \qquad can act as an acid or base.
- Conjugate Pairs
- Using \qquad definition of acids and bases
- Conjugate Acid/Base pairs: A pair of species that are related to each other by \qquad
- The Acid makes a \qquad and the Base makes a
- The acid and base are on the \qquad side of the equation
- The conjugates are on the \qquad of the side of the equation
- When an \qquad reacts with water it produces \qquad (hydronium ion, considered the \qquad) and a
\qquad (everything left over once the H^{+}ion is removed)

- The Acid makes a \qquad and the \qquad to make the parent Acid and Base
- Therefore the reaction is \qquad which is indicated by

- Practice: Name the CB of these acids
- HNO_{3}
- $\mathrm{H}_{2} \mathrm{O}$ \qquad
- $\mathrm{H}_{3} \mathrm{O}^{+}$ \qquad
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad
- $\mathrm{HCO}_{3}{ }^{-}$ \qquad
- Practice: Name the CA of these bases
- OH^{-}
- $\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{HCO}_{3}{ }^{-}$
- $\mathrm{SO}_{4}{ }^{-2}$
- ClO_{4}^{-} \qquad

Name: \qquad

- Practice: Determine the Acid, Base, CA , and CB for the following reactions.
- $\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-}$
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
- Water

Water is the most common \qquad substance (a substance that can act as both an
\qquad or a \qquad
Ionization of water:

- $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- Water is both accepting a \qquad and donating a \qquad
- (depends on the other reactant)
- Water will act as a \qquad when reacted with an acid
- Water will act as an \qquad when reacted with a base
- Water has a pH of 7 and is considered \qquad
\qquad ion (often times abbreviated to just ______) concentration determines pH of a substance

End Video 1

- Calculating pH
- To help deal with small numbers chemist came up with the \qquad
- The pH scale evaluates the concentration of \qquad
- Square brackets [] indicate \qquad
- The pH scale ranges from \qquad
- Because it is a scale, pH is not measured in \qquad
- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
- A \qquad pH is more acidic (has a \qquad concentration of hydronium ion) than a higher pH
- Remember \qquad ions and \qquad ions are used interchangeably
- Example: Find the pH of a 0.0025 M HCl solution.
- Example: What is the concentration of hydrogen ions in a solution that has a pH of 4.3?
- Calculating pOH
- A similar logarithmic scale has been created to calculate the concentration of the \qquad
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
- Example: What is the pOH of a solution that has a hydroxide ion concentration of $4.82 \times 10^{-5} \mathrm{M}$?
- Example: What is the concentration of hydroxide ions in a solution that has a pOH of 12.2 ?
- Another way to calculate pH and pOH
- The pH and the pOH or the concentration of the H^{+}ion or the concentration of the OH^{-}ion can be determined using the following equation: $\mathrm{pH}+\mathbf{p O H}=\mathbf{1 4 . 0 0}$
- Example: A solution has a pOH of 11.76 . What is the pH of this solution?
- Example: What is the $\left[\mathrm{H}^{+}\right]$when the pOH is 5 ?
\qquad
- Testing for pH
- pH meters and probes- \qquad determine pH
- pH paper, Litmus paper- paper indicators use \qquad to indicate pH
- Liquid Indicators (listed below): change \qquad based on pH
- Neutralization Reactions
- When an acid reacts with a base a \qquad occurs
- In a neutralization reaction \qquad and a \qquad are always produced
- A neutralization reaction does NOT always result in a \qquad
- It results in a more neutral substance but not always completely neutral
- When a strong acid reacts with a strong base it will produce a \qquad salt and water
- Example: $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{HOH}+\mathrm{NaCl}$
- When a strong acid reacts with a weak base it produces an \qquad salt and water
- When a strong base reacts with a weak acid it produces a \qquad salt and water
- When a weak acid reacts with a weak base it produces a \qquad —,
\qquad or \qquad salt
- Titrations
- Titration- an \qquad way to determine the concentration of an acid or a base
- A \qquad reaction that reacts an unknown concentration of acid or base with a known concentration of base or acid

○ -point at which titration is complete

- At the endpoint, the \qquad will change color
- Data is then used to create a graph called a \qquad - point at which there are equal moles of acid and base
- Shown on the \qquad
- The titration curve is then used to calculate the \qquad of the unknown acid/base
- Buffers:

0 \qquad - A solution that resists change in pH

- A buffer consists of a \qquad and its conjugate base in \qquad amounts
- The buffer solution is continuously converting between acid and its conjugate base to keep the pH of the solution the \qquad
- Used to maintain \qquad pH
- Example:

