\qquad

Unit 10: Stoichiometry
Stoichiometry= the process of using a \qquad to determine the relative amounts of reactants and products involved in a reaction.

Info given by a chemical equation:

- Chemical changes involve the \qquad of atom groupings as one or more substances change to new substances
- Reactants vs. products

What info are we given by the following equation?

- The \qquad can be used to describe the reaction
- The coefficients can have units of \qquad or \qquad

$\mathrm{CO}_{(\mathrm{g})}$	+	$2 \mathrm{H}_{2(\mathrm{~g})}$	\rightarrow	$\mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{I})}$
1 Molecule CO	+			
6.02×10^{23} CO molecules	+			
1 mol CO molecules	+			

Balancing Equations- first step in all stoichiometry problems is to balance the equation.
Balance the following equation:
$\ldots \ldots C_{3} \mathrm{C}_{8(\mathrm{~g})}^{+\ldots} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \ldots \mathrm{CO}_{2(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Mole Ratio= the ratio of moles of one substance to moles of another substance in a balanced chemical equation. Mole ratios are determined from the coefficients in a balanced chemical equation. Mole ratios are used as conversion factors in stoichiometry.
$\mathrm{Ex}: 2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
Mole ratio of sodium to chlorine gas= \qquad
Mole ratio of sodium to sodium chloride= \qquad
Mole ratio of chlorine to sodium chloride= \qquad
Why is a BALANCED chemical equation important?

Mole to Mole relationships

- We can used a \qquad chemical equation to predict the moles of products that a given number of moles of reactant will yield, or moles of reactant needed for a certain amount of product
- \qquad are used instead of \qquad because each element/compound has a different mass
- A balanced equation is needed to make a \qquad comparison.
\qquad
\qquad
- The \qquad in a balanced equation will give us the mole to mole ratio
-
- Ex. 1: In a synthesis reaction between nitrogen and hydrogen gas, how many moles of hydrogen is needed to make 4.0 moles of ammonia?
- Balanced chemical reaction:
- Mole ratio:
- Ex. 2: In a synthesis reaction between nitrogen gas and hydrogen gas, how many moles of nitrogen are needed to react with 6.0 moles of hydrogen gas?
- Ex. 3: For a synthesis reaction between hydrogen and oxygen to make water answer the following:
A) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 5.00 moles of oxygen are used?
B) If 3.00 moles of $\mathrm{H}_{2} \mathrm{O}$ are produced, how many moles of oxygen are needed?
C) How many moles of hydrogen gas are needed to produce 4 moles of water?

Mass to Mass Conversions:

- Moles represent number of molecules and we cannot count molecules directly
- In chemistry we count by \qquad
- Steps to follow when given a mass of substance A and wanting mass of substance B

Step 1:
Step 2:
Step 3:
Step 4:
\qquad

- When solving these problems:
- ALWAYS start with a balanced chemical equation
- Determine molar masses needed
- Determine mole ratio
- Use a T chart, starting with given
- Ex. 4: Oxygen gas can be produced by decomposing potassium chlorate (potassium chloride is also produced). If 138.6 g of KClO_{3} is heated and decomposes completely, what mass of oxygen gas is produced?
- Ex. 5: A chemical reaction between diboron hexahydride and oxygen gas will produce Oxoborinic acid $\left(\mathrm{HBO}_{2}\right)$ and water. A.) What mass of O_{2} will be needed to burn 36.1 g of diboron hexahydride? B.) How many grams of water are produced from 19.2 g of $\mathrm{B}_{2} \mathrm{H}_{6}$?
\qquad

Limiting Reactants

- S'mores: A Non-Chemistry Example
- What is the "formula" for making s'mores?
- How many s'mores could I make if I had 8 gram crackers?
- How many s'mores could I make if I had 8 marshmallows?
- How many s'mores could I make if I had 8 chocolate squares?
- If I have 8 gram crackers, 8 marshmallows, and 8 chocolate squares, how many s'mores could I make?
- Which ingredient limits the amount of s'mores that can be made?
- Which ingredients are excess (left over?)? How much excess of those ingredients would you have?
- Limiting Reactant: is the reactant which limits how much the product is produced (also called limiting reagent).
- The limiting reactant \qquad and
\qquad is left over.
- The Limiting Reactant \qquad or \qquad the reaction after it is entirely consumed.
- Excess Reactant: does not limit or stop a reaction from occurring (also called limiting reagent)
- There will be an \qquad or \qquad of this reactant.
- Steps to determine the Limiting Reactant:
- Step 1:
- Step 2:
- Ex. 9: Aluminum reacts with chlorine to form aluminum chloride: $\mathbf{2 A I}+\mathbf{3 C l} \mathbf{2}_{\mathbf{2}} \boldsymbol{- - >} \mathbf{2 A I C l}_{\mathbf{3}}$ If you have 34.0 g of Al and 39.0 g of Cl_{2}, what is the limiting reactant? What is the excess reactant?
\qquad
\qquad
- Ex. 10: When 3.22 moles of Al reacts with 4.96 moles of HBr , how many moles of H_{2} are formed, considering the reaction below? What is the limiting reactant? What is the excess reactant?
$\mathbf{2 ~ A I}+\mathbf{6 H B r} \rightarrow \mathbf{2} \mathrm{AlBr}_{3}+\mathbf{3} \mathrm{H}_{2}$
- Ex. 11: Example 11: How many grams of aluminum sulfate are produced if 23.33 g Al reacts with $74.44 \mathrm{~g} \mathrm{CuSO}_{4}$? What reactant limits the reaction? Which reactant will not be completely used up? $\quad \mathrm{Al}_{(\mathrm{s})}+\mathrm{CuSO}_{4}\left(\right.$ aq) $\rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$

Percent Yield:

- Theoretical Yield:
- Actual Yield:
- Percent Yield:
- Ex. 12: What is the \% yield of $\mathrm{H}_{2} \mathrm{O}$ if $138 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ is produced from $16 \mathrm{~g} \mathrm{H}_{2}$ and excess O_{2} ?
- Ex. 13: What is the \% yield of NH_{3} if $40.5 \mathrm{~g} \mathrm{NH}_{3}$ is produced from $20.0 \mathrm{~mol} \mathrm{H}_{2}$ and excess N_{2} ?
\qquad
- Ex. 14 Putting it all together: What is the \% yield of $\mathrm{H}_{2} \mathrm{O}$ if $58 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ are produced by combining $60 \mathrm{~g} \mathrm{O}_{2}$ and $7.0 \mathrm{~g} \mathrm{H}_{2}$? Hint: determine limiting reagent first
- Ex. 15: The electrolysis of water forms H_{2} and O_{2}. What is the $\%$ yield of O_{2} if 12.3 g of O_{2} is produced from the decomposition of $14.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
- Ex. 16: 107 g of oxygen is produced by heating 300 grams of potassium chlorate. Calculate \% yield. $\quad 2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
- Example 17: What is the \% yield of ferrous sulfide if 3.00 moles of Fe reacts with excess sulfur to produce 220 grams of ferrous sulfide? $\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS}$

