Ν	а	n	ne	<u>.</u>	
	u				

Unit 10: Stoichiometry

<u>Stoichiometry</u> the process of using a

to determine the relative amounts of reactants and products involved in a reaction.

Info given by a chemical equation:

- Chemical changes involve the ______of atom groupings as one or more substances change to new substances
- Reactants vs. products

What info are we given by the following equation?

• The			can be used to	describe the reaction
The coefficients can have units of			or	
CO (g)	+	2H _{2 (g)}	\rightarrow	CH₃OH(I)
1 Molecule CO	+			
6.02 x 10 ²³ CO molecules	+			
1 mol CO molecules	+			

Balancing Equations- first step in all stoichiometry problems is to balance the equation.

Balance the following equation:

 $\underline{\qquad}C_{3}H_{8}(g) + \underline{\qquad}O_{2}(g) \rightarrow \underline{\qquad}CO_{2}(g) + \underline{\qquad}H_{2}O(g)$

<u>Mole Ratio</u> the ratio of moles of one substance to moles of another substance in a balanced chemical equation. Mole ratios are determined from the coefficients in a balanced chemical equation. Mole ratios are used as conversion factors in stoichiometry.

Ex: 2Na + $Cl_2 \rightarrow$	2NaCl			
Mole ratio of sodium to chlorine gas=				
Mole ratio of sodium to sodium chloride=				
Mole ratio of chlorine to sodium chloride=				
Why is a BALANCED chemical equation important?				

Mole to Mole relationships

- We can used a ______ chemical equation to predict the moles of products that a given number of moles of reactant will yield, or moles of reactant needed for a certain amount of product
- _____ are used instead of ______ because each element/compound has a different mass
- A balanced equation is needed to make a ______ comparison.

- The ______ in a balanced equation will give us the mole to mole ratio
- ______ are used as conversion factors
- Ex. 1: In a synthesis reaction between nitrogen and hydrogen gas, how many moles of hydrogen is needed to make 4.0 moles of ammonia?
 - Balanced chemical reaction:
 - Mole ratio:
- Ex. 2: In a synthesis reaction between nitrogen gas and hydrogen gas, how many moles of nitrogen are needed to react with 6.0 moles of hydrogen gas?

- Ex. 3: For a synthesis reaction between hydrogen and oxygen to make water answer the following:
 - A) How many moles of H₂O are produced when 5.00 moles of oxygen are used?
 - B) If 3.00 moles of H₂O are produced, how many moles of oxygen are needed?
 - C) How many moles of hydrogen gas are needed to produce 4 moles of water?

Mass to Mass Conversions:

- Moles represent number of molecules and we cannot count molecules directly
- In chemistry we count by ______
- Steps to follow when given a mass of substance A and wanting mass of substance B
 - Step 1:
 - Step 2:
 - Step 3:
 - Step 4:

- When solving these problems:
 - o ALWAYS start with a balanced chemical equation
 - o Determine molar masses needed
 - o Determine mole ratio
 - Use a T chart, starting with given
- Ex. 4: Oxygen gas can be produced by decomposing potassium chlorate (potassium chloride is also produced). If 138.6 g of KClO₃ is heated and decomposes completely, what mass of oxygen gas is produced?
- Ex. 5: A chemical reaction between diboron hexahydride and oxygen gas will produce Oxoborinic acid (HBO₂)and water. A.) What mass of O₂ will be needed to burn 36.1g of diboron hexahydride? B.) How many grams of water are produced from 19.2 g of B₂H₆?

Limiting Reactants

- S'mores: A Non-Chemistry Example
 - What is the "formula" for making s'mores?
 - How many s'mores could I make if I had 8 gram crackers?
 - How many s'mores could I make if I had 8 marshmallows?
 - How many s'mores could I make if I had 8 chocolate squares?
 - If I have 8 gram crackers, 8 marshmallows, and 8 chocolate squares, how many s'mores could I make?
 - Which ingredient limits the amount of s'mores that can be made?
 - Which ingredients are excess (left over?)? How much excess of those ingredients would you have?
- <u>Limiting Reactant</u>: is the reactant which limits how much the product is produced (also called limiting reagent).
 - The limiting reactant ______and

_____ is left over.

- The Limiting Reactant _____ or ____ the reaction after it is entirely consumed.
- <u>Excess Reactant:</u> does not limit or stop a reaction from occurring (also called limiting reagent)
 - There will be an _____ or _____ of this reactant.
- Steps to determine the Limiting Reactant:
 - Step 1:

o Step 2:

• Ex. 9: Aluminum reacts with chlorine to form aluminum chloride: **2AI + 3Cl₂ ---> 2AICl₃** If you have 34.0 g of AI and 39.0 g of Cl₂, what is the limiting reactant? What is the excess reactant? Ex. 10: When 3.22 moles of AI reacts with 4.96 moles of HBr, how many moles of H₂ are formed, considering the reaction below? What is the limiting reactant? What is the excess reactant?
2 AI + 6 HBr → 2 AIBr₃ + 3 H₂

Ex. 11: Example 11: How many grams of aluminum sulfate are produced if 23.33 g Al reacts with 74.44 g CuSO₄? What reactant limits the reaction? Which reactant will not be completely used up? Al (s) + CuSO₄ (aq) → Al₂(SO₄)₃ (aq) + Cu (s)

Percent Yield:

- Theoretical Yield:
- Actual Yield:
- Percent Yield:
- Ex. 12: What is the % yield of H_2O if 138 g H_2O is produced from 16 g H_2 and excess O_2 ?
- Ex. 13: What is the % yield of NH₃ if 40.5 g NH₃ is produced from 20.0 mol H₂ and excess N₂?

- Ex. 14 Putting it all together: What is the % yield of H₂O if 58 g H₂O are produced by combining 60 g O₂ and 7.0 g H₂? Hint: determine limiting reagent first
- Ex. 15: The electrolysis of water forms H₂ and O₂. What is the % yield of O₂ if 12.3 g of O₂ is produced from the decomposition of 14.0 g H₂O?
- Ex. 16: 107 g of oxygen is produced by heating 300 grams of potassium chlorate. Calculate % yield. 2KClO₃ → 2KCl + 3O₂
- Example 17: What is the % yield of ferrous sulfide if 3.00 moles of Fe reacts with excess sulfur to produce 220 grams of ferrous sulfide? Fe + S → FeS