Name: _____

Period:

Unit 10: Stoichiometry Funsheets

Part A: Balanced Chemical Equations- Balance the following chemical equations.

- 1) $__AI + __CI_2 \rightarrow __AICI_3$
- 2) ____Mg(ClO)₂ \rightarrow ___MgCl₂ + __O₂ 3) ___FeCl₃ + ___LiOH \rightarrow ___Fe(OH)₃ + ___LiCl
- 4) $Na + O_2 \rightarrow Na_2O$
- 5) ____KBr + ___F₂ \rightarrow ___KF + ___Br₂
- 6) ____Al + ____H₂SO₄ \rightarrow ____Al₂(SO₄)₃ + ____H₂
- 7) ____Cr(OH)₃ \rightarrow ____Cr₂O₃ + ____H₂O
- 8) ____Li + ____H₂O \rightarrow ____LiOH + ____H₂
- 9) ____Pb(NO₃)₂ + ____NaBr \rightarrow ____PbBr₂ + ____NaNO₃
- 10) _____Fe₂(CO₃)₃ \rightarrow _____Fe₂O₃ + _____CO₂
- 11) $P + Fe_2O_3 \rightarrow P_4O_{10} + Fe$
- 12) $C_4H_8 + O_2 \rightarrow CO_2 + H_2O$
- 13) ____C₄H₁₀ + ___O₂ \rightarrow ___CO₂ + ___H₂O 14) ___Ti(OH)₄ + __CaS \rightarrow __TiS₂ + __Ca(OH)₂
- 15) ____Mg + ____H₃PO₃ \rightarrow ____H₂ + ____Mg₃(PO₃)₂

Part B: Mass and Moles-

Convert the following to moles

- 1) 235.0 g NaNO₃
- 2) $130.0 \text{ g Al}_2(SO_4)_3$
- 3) 50.0 g Fe(OH)₃
- 4) $75.0 \text{ g Fe}_2(CO_3)_3$
- 5) 196.0 g H₂SO₄

- Convert the following to mass
 - 6) 2.0 moles of C₄H₈
 - 7) 1.5 moles of Pb(NO_3)₂
 - 8) 0.25 moles of Fe₂O₃
 - 9) 5.0 moles of LiCl
 - 10) 6.1 moles of KBr

Part C: Mole Ratios-

In equation 1 from Part A, what is the mole ratio of...

- 1) Al to Cl₂
- 2) Cl₂ to Al
- 3) Cl₂ to AlCl₃
- 4) Al to AlCl₃

In equation 9 from Part A, what is the mole ratio of...

- 5) Pb(NO₃)₂ to NaBr
- 6) NaBr to PbBr₂
- 7) PbBr₂ to NaNO₃
- 8) NaNO₃ to Pb(NO_3)₂

Name:	Period:
Name:	Period:

Part D: Stoichiometry Problems: (refer to your list of equations in Part A)

- 1) In reaction 1, how many moles of AlCl₃ can be made from 4.5 mole of Al?
- 2) In reaction 1, how moles of Cl₂ are needed to produce 3.0 moles of AlCl₃?
- 3) In reaction 1, how moles of Al are needed to react with 7.5 moles of Cl₂?
- 4) In reaction 4, how many moles of O₂ are needed to react with 5 moles of Na?
- 5) In reaction 5, how many moles of Br₂ are produced from 8 moles of KBr?
- 6) In reaction 10, how many moles of CO₂ can be produced if 7.5 moles of Fe₂O₃ are made?
- 7) In reaction 11, if 5.0 moles of P begin the reaction, how many moles of Fe can be produced?
- 8) In reaction 11, how many moles of Fe₂O₃ will react if the reaction begins with 0.53 moles of P?
- 9) In reaction 12, how many moles of O₂ are needed to produce 3.0 moles of CO₂?
- 10) In reaction 12, if 112.0 grams of C_4H_8 begin the reaction, how many moles of O_2 will be needed to completely react?
- 11) In reaction 12, if 112.0 grams of C₄H₈ begin the reaction, how many moles of CO₂ will be formed?
- 12) In reaction 5, if 0.23 moles of KBr are used, how many grams of KF can be made?
- 13) In reaction 5, if 50.0 moles of KBr are used, how many grams of F₂ will be needed to completely react with KBr?
- 14) In reaction 8, if 3 moles of Li are used, how many grams of H₂ will be formed?
- 15) In reaction 8, if 3 moles of Li are used, how many grams of H₂O will also react?

Name:	Period:
Part E:	Mass to Mass- Answer the following questions. Include balanced chemical equation and
	ALL WORK. Lithium perchlorate decomposes to produce lithium chloride and oxygen gas. How many grams of oxygen can be produced if 100.0 g of lithium perchlorate decompose at STP?
2)	Hydrogen gas and chlorine gas combine for form hydrochloric acid. If 43g of hydrochloric acid are produced, how many grams of hydrogen gas was used?
3)	When 0.46 g of antimony (III) oxide reacts with carbon to produce antimony metal and carbon monoxide gas, determine the mass of antimony metal produced.
4)	How many grams of carbon monoxide must react with oxygen to produce 10.0g of carbon dioxide?

- 6) When lithium nitride reacts with water, lithium hydroxide and ammonia gas (NH₃) are produced. Determine the mass of lithium hydroxide produced when 0.38 g of lithium nitride reacts with water.
- 7) Sodium iodide reacts with chlorine gas to produce Iodine gas and sodium chloride in a single replacement reaction. What mass of sodium chloride is produced from 0.29 g of sodium iodide?

Period:	
---------	--

Part F: Limiting Reactant- Answer the following questions. Include a balanced chemical equation and SHOW ALL WORK.

1) Identify the limiting reactant when 1.22g of oxygen gas reacts with 1.05g of hydrogen gas to produce liquid water. $Q_2 + Q_2 + Q_3 + Q_4$

- 2) Identify the limiting reactant when 5.87g of magnesium hydroxide reacts with 12.84g of hydrosulfuric acid to produce liquid water and magnesium sulfate.
 - $__Mg(OH)_2 + __H_2SO_4 \rightarrow __H_2O + __MgSO_4$

3) Identify the limiting reactant when 7.81g of hydrochloric acid reacts with 5.24g of sodium hydroxide and produces liquid water and sodium chloride.

4) Identify the limiting reactant when 43.25g of calcium carbide (CaC₂) reacts with 33.71g of liquid water to produce calcium hydroxide and acetylene (C₂H₂).

$$\underline{\text{CaC}_2} + \underline{\text{H}_2O} \rightarrow \underline{\text{Ca}(OH)_2} + \underline{\text{C}_2H_2}$$

5) Identify the limiting reactant when 4.687g of sulfur tetrafluoride reacts with 6.281g of diiodine pentoxide to produce iodine pentafluoride and sulfur dioxide.

 $__SF_4 + __I_2O_5 \rightarrow __IF_5 + __SO_2$

6) Identify the limiting reactant when 19.9 g of CuO are exposed to 2.02 g of H_2 to produce copper metal and water. ___CuO + ___H $_2$ \rightarrow ___Cu + ___H $_2$ O

8) If 16.8g of carbon monoxide is mixed under high pressure with 1.78g of hydrogen, CH₃OH (methanol) will be produced? How many grams of methanol will be produced? ____CO + ____H₂ \rightarrow ____CH₃OH

Part G: Percent Yield- Determine the percent yield in the following reactions. Show all work and include a balanced chemical equation.

- 1) 3.74 g of sodium metal reacts with oxygen to produce 5.34g of sodium peroxide.
- 2) Potassium metal reacts with 5.60 moles of oxygen gas to produce 0.230 moles of potassium oxide.
- 3) 4.0 moles of rubidium metal reacts with 2.7 moles oxygen to produce 0.88 moles of rubidium oxide.
- 4) 3.44g of Cesium metal reacts with of oxygen to produce 2.83g of cesium oxide.
- 5) Tetraantimony hexoxide reacts with 27.1g carbon to produce 173g of antimony and carbon monoxide (the other product).
- 6) 45.9g of sodium bromide reacts with chlorine gas to produce 12.8g of sodium chloride and bromine gas (other product).
- 7) 15.0 moles of ammonia gas reacts with oxygen gas to produce 8.90 moles of nitrogen monoxide gas and water (other product).

Name		Period:
rvaine.		r criou.
	Vocabulary What is a mole?	
2)	What is stoichiometry?	
3)	What is the first step to all stoichiometry problems?	
4)	What is the mole ratio?	
5)	Where does the mole ration come from?	
6)	Why are balanced chemical equations important in stoichiometry?	
7)	What is a limiting reactant?	
8)	What is an excess reactant?	
9)	How do you determine the limiting reactant?	
10)	What is theoretical yield?	
11)	How is the theoretical yield determined?	
12)	What is actual yield?	
13)	How is actual yield determined?	
14	What is percent yield?	

15) What is the formula for percent yield?