\qquad

Unit 10: Stoichiometry Funsheets

Part A: Balanced Chemical Equations- Balance the following chemical equations.

Part B: Mass and Moles-
Convert the following to moles
Convert the following to mass

1) $235.0 \mathrm{~g} \mathrm{NaNO}_{3}$
2) 2.0 moles of $\mathrm{C}_{4} \mathrm{H}_{8}$
3) $130.0 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
4) 1.5 moles of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
5) $50.0 \mathrm{~g} \mathrm{Fe}(\mathrm{OH})_{3}$
6) $75.0 \mathrm{~g} \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
7) $196.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
8) 0.25 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
9) 5.0 moles of LiCl
10) 6.1 moles of KBr

Part C: Mole Ratios-
In equation 1 from Part A, what is the mole ratio of...

1) Al to Cl_{2}
2) Cl_{2} to Al
3) Cl_{2} to AlCl_{3}
4) Al to AlCl_{3}

In equation 9 from Part A, what is the mole ratio of...
5) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ to NaBr
6) NaBr to PbBr_{2}
7) PbBr_{2} to NaNO_{3}
8) NaNO_{3} to $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Name: \qquad Period: \qquad

Part D: Stoichiometry Problems: (refer to your list of equations in Part A)

1) In reaction 1, how many moles of AlCl_{3} can be made from 4.5 mole of AI?
2) In reaction 1 , how moles of Cl_{2} are needed to produce 3.0 moles of AlCl_{3} ?
3) In reaction 1, how moles of Al are needed to react with 7.5 moles of Cl_{2} ?
4) In reaction 4, how many moles of O_{2} are needed to react with 5 moles of Na ?
5) In reaction 5, how many moles of Br_{2} are produced from 8 moles of KBr ?
6) In reaction 10 , how many moles of CO_{2} can be produced if 7.5 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are made?
7) In reaction 11, if 5.0 moles of P begin the reaction, how many moles of Fe can be produced?
8) In reaction 11, how many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will react if the reaction begins with 0.53 moles of P ?
9) In reaction 12 , how many moles of O_{2} are needed to produce 3.0 moles of CO_{2} ?
10) In reaction 12 , if 112.0 grams of $\mathrm{C}_{4} \mathrm{H}_{8}$ begin the reaction, how many moles of O_{2} will be needed to completely react?
11) In reaction 12 , if 112.0 grams of $\mathrm{C}_{4} \mathrm{H}_{8}$ begin the reaction, how many moles of CO_{2} will be formed?
12) In reaction 5 , if 0.23 moles of $K B r$ are used, how many grams of $K F$ can be made?
13) In reaction 5 , if 50.0 moles of KBr are used, how many grams of F_{2} will be needed to completely react with KBr ?
14) In reaction 8 , if 3 moles of Li are used, how many grams of H_{2} will be formed?
15) In reaction 8 , if 3 moles of Li are used, how many grams of $\mathrm{H}_{2} \mathrm{O}$ will also react?
\qquad

Part E: Mass to Mass- Answer the following questions. Include balanced chemical equation and SHOW ALL WORK.

1) Lithium perchlorate decomposes to produce lithium chloride and oxygen gas. How many grams of oxygen can be produced if 100.0 g of lithium perchlorate decompose at STP?
2) Hydrogen gas and chlorine gas combine for form hydrochloric acid. If 43 g of hydrochloric acid are produced, how many grams of hydrogen gas was used?
3) When 0.46 g of antimony (III) oxide reacts with carbon to produce antimony metal and carbon monoxide gas, determine the mass of antimony metal produced.
4) How many grams of carbon monoxide must react with oxygen to produce 10.0 g of carbon dioxide?
5) When hydrogen peroxide decomposes, it produces liquid water and oxygen gas. What mass of hydrogen peroxide must decompose to produce 0.77 g of liquid water?
6) When lithium nitride reacts with water, lithium hydroxide and ammonia gas $\left(\mathrm{NH}_{3}\right)$ are produced. Determine the mass of lithium hydroxide produced when 0.38 g of lithium nitride reacts with water.
7) Sodium iodide reacts with chlorine gas to produce lodine gas and sodium chloride in a single replacement reaction. What mass of sodium chloride is produced from 0.29 g of sodium iodide?

Name: \qquad Period: \qquad

Part F: Limiting Reactant- Answer the following questions. Include a balanced chemical equation and SHOW ALL WORK.

1) Identify the limiting reactant when 1.22 g of oxygen gas reacts with 1.05 g of hydrogen gas to produce liquid water. \qquad $\mathrm{O}_{2}+$ \qquad $\mathrm{H}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$
2) Identify the limiting reactant when 5.87 g of magnesium hydroxide reacts with 12.84 g of hydrosulfuric acid to produce liquid water and magnesium sulfate.
\qquad
3) Identify the limiting reactant when 7.81 g of hydrochloric acid reacts with 5.24 g of sodium hydroxide and produces liquid water and sodium chloride.
\qquad $\mathrm{HCl}+$ \qquad $\mathrm{NaOH} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad NaCl
4) Identify the limiting reactant when 43.25 g of calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with 33.71 g of liquid water to produce calcium hydroxide and acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$.

$$
\mathrm{CaC}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots{ }_{C} \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{C}_{2} \mathrm{H}_{2}
$$

Name:
Period: \qquad
5) Identify the limiting reactant when 4.687 g of sulfur tetrafluoride reacts with 6.281 g of diiodine pentoxide to produce iodine pentafluoride and sulfur dioxide.
\qquad
6) Identify the limiting reactant when 19.9 g of CuO are exposed to 2.02 g of H_{2} to produce copper metal and water. \qquad CuO + \qquad $\mathrm{H}_{2} \rightarrow$ \qquad $\mathrm{Cu}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
7) If 41.6 g of dinitrogen tetraoxide reacts with 20.8 g of dinitrogen tetrahydride, the products will be nitrogen gas and water. What mass of water will be produced?
\qquad
8) If 16.8 g of carbon monoxide is mixed under high pressure with 1.78 g of hydrogen, $\mathrm{CH}_{3} \mathrm{OH}$ (methanol) will be produced? How many grams of methanol will be produced? $\ldots _$CO $+\mathrm{H}_{2} \rightarrow$ __ $^{\mathrm{CH}} \mathrm{OH}_{3}$

Name:
Period: \qquad

Part G: Percent Yield- Determine the percent yield in the following reactions. Show all work and include a balanced chemical equation.

1) 3.74 g of sodium metal reacts with oxygen to produce 5.34 g of sodium peroxide.
2) Potassium metal reacts with 5.60 moles of oxygen gas to produce 0.230 moles of potassium oxide.
3) 4.0 moles of rubidium metal reacts with 2.7 moles oxygen to produce 0.88 moles of rubidium oxide.
4) 3.44 g of Cesium metal reacts with of oxygen to produce 2.83 g of cesium oxide.
5) Tetraantimony hexoxide reacts with 27.1 g carbon to produce 173 g of antimony and carbon monoxide (the other product).
6) 45.9 g of sodium bromide reacts with chlorine gas to produce 12.8 g of sodium chloride and bromine gas (other product).
7) 15.0 moles of ammonia gas reacts with oxygen gas to produce 8.90 moles of nitrogen monoxide gas and water (other product).

Name: \qquad Period: \qquad

Part H: Vocabulary

1) What is a mole?
2) What is stoichiometry?
3) What is the first step to all stoichiometry problems?
4) What is the mole ratio?
5) Where does the mole ration come from?
6) Why are balanced chemical equations important in stoichiometry?
7) What is a limiting reactant?
8) What is an excess reactant?
9) How do you determine the limiting reactant?
10) What is theoretical yield?
11) How is the theoretical yield determined?
12) What is actual yield?
13) How is actual yield determined?
14) What is percent yield?
15) What is the formula for percent yield?
