
\qquad Pd: \qquad

Basic Stoichiometry PhET Lab rvsd 2/2011

Let's make some sandwiches!

Introduction:

When we bake/cook something, we use a specific amount of each ingredient. Imagine if you made a batch of cookies and used way too many eggs, or not enough sugar. YUCK! In chemistry, reactions proceed with very specific recipes. The study of these recipes is stoichiometry. When the reactants are present in the correct amounts, the reaction will produce products. What happens if there are more or less of some of the reactants present?

Procedure: Go to: http://phet.colorado.edu/en/simulation/reactants-products-and-leftovers
Click the play button

Part 1: Making Sandwiches:

Cheese Sandwiches

1. The Cheese Sandwhich is a simulation of a two-reactant synthesis reaction. In this case, one reactant will be limiting, while the other will be in excess.
2. Take some time and familiarize yourself with the simulation.
3. Set the reaction to a simple mole ratio of $2: 1$
4. Complete the table below while making tasty cheese sandwiches (Enter values into reactants and products section at bottom for simultation)

Bread Used	Cheese Used	Sandwiches Made	Excess Bread	Excess Cheese
5 slices	5 slices			
4 slices	3 slices			
		2 sandwiches	1 slice	0 slices
6 slices		3 sandwiches		4 slices

Meat and Cheese Sandwiches

1. The Meat and Cheese Sandwhich is a simulation of a three-reactant synthesis reaction. In this case, one reactant will be limiting, while the other two will be in excess.
2. Take some time and familiarize yourself with the simulation.
3. Set the reaction to a simple mole ratio of $2: 1: 1$
4. Complete the table below while making tasty cheese sandwiches (Enter values into reactants and products section at bottom for simulation)

Bread Used	Meat Used	Cheese Used	Sandwiches Made	Excess Bread	Excess Meat	Excess Cheese
5 slices	5 slices	5 slices				
4 slices	3 slices	2 slices				
			2 sandwiches	1 slice	0 slices	2 slices
6 slices			3 sandwiches		4 slices	1 slice

Part 2: Molecules:

Make Water

1. Now let's work with real chemical reaction, one that creates a very entertaining BOOM!
2. What is the mole ratio for the reaction of hydrogen and oxygen to produce water?
$\ldots \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}$
3. Complete the table below while making water $\mathrm{H}_{2} \mathrm{O}$ from hydrogen H_{2} and oxygen O_{2} :

Hydrogen Molecules H_{2}	Oxygen Molecules O_{2}	Water Molecules $\mathrm{H}_{2} \mathrm{O}$	Excess H_{2}	Excess O_{2}
4 molecules	4 molecules			
7 molecules	6 molecules			
		4 molecules	0 molecules	0 molecules
9 moles	8 moles			
		4 moles	1 moles	0 moles
4.0 moles	2.5 moles			
1.5 moles		1.5 moles	0 moles	0 moles

4. Notice that the labels changed from molecules to moles. This does not change the mole ratio, as a mole is simply a large number of molecules. How many molecules is a mole? \qquad
5. Now try producing ammonia, a very important chemical in industry and farming.
6. What is the mole ratio for the production of ammonia? \qquad $N_{2}+$ \qquad NH_{3}

7. Complete the table below:

Moles N_{2}	Moles H_{2}	Moles NH_{3}	Excess N_{2}	Excess H_{2}
3 moles	6 moles			
6 moles	3 moles			
		4 moles	2 moles	0 moles
1.5 moles	4.0 moles			

8. Combustion of hydrocarbons like methane CH_{4} produce two products, water and carbon dioxide CO_{2}.
9. What is the mole ratio for the combustion of methane? _ $\mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
10. Complete the table below: WATCH FOR FRACTIONS

mol CH4	$\mathrm{mol} \mathrm{O}_{2}$	$\mathrm{mol} \mathrm{CO}_{2}$	$\mathrm{mol} \mathrm{H}_{2} \mathrm{O}$	Excess mol CH ${ }_{4}$	Excess mol O_{2}
4 mol	4 mol				
3 mol	6 mol				
		2 mol	4 mol		
		3 mol		0 mol	
				2 mol	0 mol
				3 mol	1 mol

Part 3: Game:

Game: Level 1
Fill in the chart and include the correct formulas, no leftovers. Play for time after first time.

	Reactants	\rightarrow	Products	Best time
\#1				
\#2				
\#3				
\#4				
\#5				

Game: Level 2

Fill in the chart and include the correct formulas, no leftovers. Play for time after first time.

	Reactants	\rightarrow	Products	Best time
$\# 1$				
$\# 2$				
$\# 3$				
$\# 4$				
$\# 5$				

Game: Level 3

Fill in the chart and include the correct formulas, no leftovers. Play for time after first time.

	Reactants	\rightarrow	Products	Best time
\#1				
\#2				
\#3				
\#4				
\#5				

